Publications by authors named "Combrie S"

We report on a new approach of a low phase noise electro-optomechanical oscillator directly working in the GHz frequency range. The developed nanoscale oscillator is a one-dimensional photonic crystal made of gallium phosphide (GaP), heterogeneously integrated on silicon-on-insulator circuitry. Based on the strong interaction between the optical mode at the telecommunication wavelength and the mechanical mode in GHz, ultra-pure mechanical oscillations are enabled and directly imprinted on an optical carrier.

View Article and Find Full Text PDF

We theoretically investigate the noise properties of harmonic cavity nanolasers by introducing a model of coupled equations of evolution of the modes, taking spontaneous emission into account. This model is used to predict the noise among the nanolaser Hermite-Gaussian modes, both in continuous wave and mode-locked regimes. In the first case, the laser noise is described in terms of noise modes, thus illustrating the role of the laser dynamics.

View Article and Find Full Text PDF

We theoretically and experimentally investigate type II second harmonic generation in III-V-on-insulator wire waveguides. We show that the propagation direction plays a crucial role and that longitudinal field components can be leveraged for robust and efficient conversion. We predict that the maximum theoretical conversion is larger than that of type I second harmonic generation for similar waveguide dimensions and reach an experimental conversion efficiency of 12%/W, limited by the propagation loss.

View Article and Find Full Text PDF

We report a new class of Optical Parametric Oscillators, based on a 20-long semiconductor Photonic Crystal Cavity and operating at Telecom wavelengths. Because the confinement results from Bragg scattering, the optical cavity contains a few modes, approximately equispaced in frequency. Parametric oscillation is reached when these high Q modes are thermally tuned into a triply resonant configuration, whereas any other parametric interaction is strongly suppressed.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how resilient mode-locking is in a harmonic cavity nanolaser that supports Hermite-Gaussian modes when facing potential distortions.
  • Different imperfections of the harmonic potential, such as its non-parabolicity and random shape errors, are analyzed for their effects on mode-locking.
  • The research also explores how various laser parameters, like the Henry factors related to the gain medium and saturable absorber, impact the stability of the mode-locked regime.
View Article and Find Full Text PDF

Mode locking is predicted in a nanolaser cavity forming an effective photonic harmonic potential. The cavity is substantially more compact than a Fabry-Perot resonator with a comparable pulsing period, which is here controlled by the potential. In the limit of instantaneous gain and absorption saturation, mode locking corresponds to a stable dissipative soliton, which is very well approximated by the coherent state of a quantum mechanical harmonic oscillator.

View Article and Find Full Text PDF

Resonant cavities with high quality factor and small mode volume provide crucial enhancement of light-matter interactions in nanophotonic devices that transport and process classical and quantum information. The production of functional circuits containing many such cavities remains a major challenge, as inevitable imperfections in the fabrication detune the cavities, which strongly affects functionality such as transmission. In photonic crystal waveguides, intrinsic disorder gives rise to high- localized resonances through Anderson localization; however their location and resonance frequencies are completely random, which hampers functionality.

View Article and Find Full Text PDF

Generating and amplifying light in silicon (Si) continues to attract significant attention due to the possibility of integrating optical and electronic components in a single material platform. Unfortunately, silicon is an indirect band gap material and therefore an inefficient emitter of light. With the rise of integrated photonics, the search for silicon-based light sources has evolved from a scientific quest to a major technological bottleneck for scalable, CMOS-compatible, light sources.

View Article and Find Full Text PDF

A two dimensional photonic crystal (PhC) resonator, based on a recent design concept, entirely embedded in Silica, is fabricated in a CMOS full-process multiproject wafer, including additional steps such as implantation, metalization, Germanium deposition and planarization. A large loaded Q-factor (5.9 × 10) is achieved without removal of the silica cladding.

View Article and Find Full Text PDF

We demonstrate that conformal encapsulation using atomic layer deposition of GaAs nano-cavity resonator made of photonic crystal cavity prevents photo-induced oxidation. This improvement allows injecting a large quantity of energy in the resonator without any degradation of the material, thus enabling spectral stability of the resonance. We prove second harmonic and third harmonic generation over more than one decade of pump power variation, thanks to this encapsulation, with a total efficiency (ηSHG = 8.

View Article and Find Full Text PDF

Optomechanical systems based on nanophotonics are advancing the field of precision motion measurement, quantum control and nanomechanical sensing. In this context III-V semiconductors offer original assets like the heteroepitaxial growth of optimized metamaterials for photon/phonon interactions. GaAs has already demonstrated high performances in optomechanics but suffers from two photon absorption (TPA) at the telecom wavelength, which can limit the cooperativity.

View Article and Find Full Text PDF

GaInP is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient dn/dT=2.

View Article and Find Full Text PDF

Weakly coupled high-Q nanophotonic cavities are building blocks of slow-light waveguides and other nanophotonic devices. Their functionality critically depends on tuning as resonance frequencies should stay within the bandwidth of the device. Unavoidable disorder leads to random frequency shifts which cause localization of the light in single cavities.

View Article and Find Full Text PDF

We demonstrated a twofold acceleration of the fast time constant characterizing the recovery of a p-doped indium-phosphide photonic crystal all-optical gate. Time-resolved spectral analysis is compared to a three-dimensional drift-diffusion model for the carrier dynamics, demonstrating the transition from the ambipolar to the faster minority carrier dominated diffusion regime. This opens the perspective for faster yet efficient nanophotonic all-optical gates.

View Article and Find Full Text PDF

Heat dissipation is improved in nonlinear III-V photonic crystal waveguides owing to the hybrid III-V/Silicon integration platform, allowing efficient four-wave mixing in the continuous-wave regime. A conversion efficiency of -17.6  dB is demonstrated with a pump power level below 100 mW in a dispersion-engineered waveguide with a flat group index of 28 over a 10 nm bandwidth.

View Article and Find Full Text PDF

Near the band edge of photonic crystal waveguides, localized modes appear due to disorder. We demonstrate a new method to elucidate spatial profile of the localized modes in such systems using precise local tuning. Using deconvolution with the known thermal profile, the spatial profile of a localized mode with quality factor (Q) > 10 is successfully reconstructed with a resolution of 2.

View Article and Find Full Text PDF

Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations.

View Article and Find Full Text PDF

The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity mode profile; i.

View Article and Find Full Text PDF

A compact (15µm × 15µm) and highly-optimized 2×2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1 dB, static and dynamic contrast are 40 dB and >20 dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 µs.

View Article and Find Full Text PDF

We demonstrate the generation of an octave-spanning supercontinuum in InGaP membrane waveguides on a silicon substrate pumped by a 1550-nm femtosecond source. The broadband nature of the supercontinuum in these dispersion-engineered high-index-contrast waveguides is enabled by dispersive wave generation on both sides of the pump as well as by the low nonlinear losses inherent to the material. We also measure the coherence properties of the output spectra close to the pump wavelength and find that the supercontinuum is highly coherent at least in this wavelength range.

View Article and Find Full Text PDF

We report the first demonstration of narrowband parametric amplification in a chip scale semiconductor waveguide. A dispersion engineered, Ga0.5In0.

View Article and Find Full Text PDF

We propose high index contrast InGaP photonic wires as a platform for the integration of nonlinear optical functions in the telecom wavelength window. We characterize the linear and nonlinear properties of these waveguide structures. Waveguides with a linear loss of 12 dB/cm and which are coupled to a single mode fiber through gratings with a -7.

View Article and Find Full Text PDF

The dynamical properties of an InP photonic crystal nanocavity are experimentally investigated using pump-probe techniques and compared to simulations based on coupled-mode theory. Excellent agreement between experimental results and simulations is obtained when employing a rate equation model containing three time constants, that we interpret as the effects of fast carrier diffusion from an initially localized carrier distribution and the slower effects of surface recombination and bulk recombination. The variation of the time constants with parameters characterizing the nanocavity structure is investigated.

View Article and Find Full Text PDF

We present theory and measurements of disorder-induced losses for low loss 1.5 mm long slow light photonic crystal waveguides. A recent class of dispersion engineered waveguides increases the bandwidth of slow light and shows lower propagation losses for the same group index.

View Article and Find Full Text PDF