Publications by authors named "Combi C"

Acromegaly is a rare disease characterized by a diagnostic delay ranging from 5 to 10 years from the symptoms' onset. The aim of this study was to develop and internally validate machine-learning algorithms to identify a combination of variables for the early diagnosis of acromegaly. This retrospective population-based study was conducted between 2011 and 2018 using data from the claims databases of Sicily Region, in Southern Italy.

View Article and Find Full Text PDF

Profound immune dysregulation and impaired response to the SARS-CoV-2 vaccine put patients with chronic lymphocytic leukemia (CLL) at risk of severe COVID-19. We compared humoral memory and T-cell responses after booster dose vaccination or breakthrough infection. (Green) Quantitative determination of anti-Spike specific antibodies.

View Article and Find Full Text PDF

Acute Kidney Injury is a severe clinical condition with a high risk of multi-organs complications and mortality. For this reason, early recognition is crucial. Our proposal based on a 3-window framework discovers all hidden regularities, called Approximate Predictive Functional Dependencies, with the aim to enable early recognition of high-risk patients during hospitalization in the Intensive Care Unit (ICU).

View Article and Find Full Text PDF

The joint modeling of genetic data and brain imaging information allows for determining the pathophysiological pathways of neurodegenerative diseases such as Alzheimer's disease (AD). This task has typically been approached using mass-univariate methods that rely on a complete set of Single Nucleotide Polymorphisms (SNPs) to assess their association with selected image-derived phenotypes (IDPs). However, such methods are prone to multiple comparisons bias and, most importantly, fail to account for potential cross-feature interactions, resulting in insufficient detection of significant associations.

View Article and Find Full Text PDF

In 2020, the CoViD-19 pandemic spread worldwide in an unexpected way and suddenly modified many life issues, including social habits, social relationships, teaching modalities, and more. Such changes were also observable in many different healthcare and medical contexts. Moreover, the CoViD-19 pandemic acted as a stress test for many research endeavors, and revealed some limitations, especially in contexts where research results had an immediate impact on the social and healthcare habits of millions of people.

View Article and Find Full Text PDF

The rapid increase of interest in, and use of, artificial intelligence (AI) in computer applications has raised a parallel concern about its ability (or lack thereof) to provide understandable, or explainable, output to users. This concern is especially legitimate in biomedical contexts, where patient safety is of paramount importance. This position paper brings together seven researchers working in the field with different roles and perspectives, to explore in depth the concept of explainable AI, or XAI, offering a functional definition and conceptual framework or model that can be used when considering XAI.

View Article and Find Full Text PDF

In this paper, we develop a new framework for mining predictive patterns that aims to describe compactly the condition (or class) of interest. Our framework relies on a classification model that considers and combines various predictive pattern candidates and selects only those that are important for improving the overall class prediction performance. We test our approach on data derived from MIMIC-III EHR database, focusing on patterns predictive of sepsis.

View Article and Find Full Text PDF

Objectives: This survey aims at reviewing the literature related to Clinical Information Systems (CIS), Hospital Information Systems (HIS), Electronic Health Record (EHR) systems, and how collected data can be analyzed by Artificial Intelligence (AI) techniques.

Methods: We selected the major journals (11 journals) collecting papers (more than 7,000) over the last five years from the top members of the research community, and read and analyzed the papers (more than 200) covering the topics. Then, we completed the analysis using search engines to also include papers from major conferences over the same five years.

View Article and Find Full Text PDF

Text normalization into medical dictionaries is useful to support clinical tasks. A typical setting is pharmacovigilance (PV). The manual detection of suspected adverse drug reactions (ADRs) in narrative reports is time consuming and natural language processing (NLP) provides a concrete help to PV experts.

View Article and Find Full Text PDF

Context: The collection of narrative spontaneous reports is an irreplaceable source for the prompt detection of suspected adverse drug reactions (ADRs). In such task qualified domain experts manually revise a huge amount of narrative descriptions and then encode texts according to MedDRA standard terminology. The manual annotation of narrative documents with medical terminology is a subtle and expensive task, since the number of reports is growing up day-by-day.

View Article and Find Full Text PDF

Healthcare processes are by nature complex, mostly due to their multidisciplinary character that requires continuous coordination between care providers. They encompass both organizational and clinical tasks, the latter ones driven by medical knowledge, which is inherently incomplete and distributed among people having different expertise and roles. Care pathways refer to planning and coordination of care processes related to specific groups of patients in a given setting.

View Article and Find Full Text PDF

Background: Developing countries need telemedicine applications that help in many situations, when physicians are a small number with respect to the population, when specialized physicians are not available, when patients and physicians in rural villages need assistance in the delivery of health care. Moreover, the requirements of telemedicine applications for developing countries are somewhat more demanding than for developed countries. Indeed, further social, organizational, and technical aspects need to be considered for successful telemedicine applications in developing countries.

View Article and Find Full Text PDF

Background: Over the past 30 years, the international conference on Artificial Intelligence in MEdicine (AIME) has been organized at different venues across Europe every 2 years, establishing a forum for scientific exchange and creating an active research community. The Artificial Intelligence in Medicine journal has published theme issues with extended versions of selected AIME papers since 1998.

Objectives: To review the history of AIME conferences, investigate its impact on the wider research field, and identify challenges for its future.

View Article and Find Full Text PDF

Objective: Elderly people who live alone can be assisted by home monitoring systems that identify risk scenarios such as falls, fatigue symptoms or burglary. Given that these systems have to manage spatiotemporal data, human intervention is required to validate automatic alarms due to the high number of false positives and the need for context interpretation. The goal of this work was to provide tools to support human action, to identify such potential risk scenarios based on spatiotemporal data visualisation.

View Article and Find Full Text PDF

Functional dependencies (FDs) typically represent associations over facts stored by a database, such as "patients with the same symptom get the same therapy." In more recent years, some extensions have been introduced to represent both temporal constraints (temporal functional dependencies - TFDs), as "for any given month, patients with the same symptom must have the same therapy, but their therapy may change from one month to the next one," and approximate properties (approximate functional dependencies - AFDs), as "patients with the same symptomgenerallyhave the same therapy." An AFD holds most of the facts stored by the database, enabling some data to deviate from the defined property: the percentage of data which violate the given property is user-defined.

View Article and Find Full Text PDF

Objective: The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e.

View Article and Find Full Text PDF

This paper focuses on the identification of temporal trends involving different granularities in clinical databases, where data are temporal in nature: for example, while follow-up visit data are usually stored at the granularity of working days, queries on these data could require to consider trends either at the granularity of months ("find patients who had an increase of systolic blood pressure within a single month") or at the granularity of weeks ("find patients who had steady states of diastolic blood pressure for more than 3 weeks"). Representing and reasoning properly on temporal clinical data at different granularities are important both to guarantee the efficacy and the quality of care processes and to detect emergency situations. Temporal sequences of data acquired during a care process provide a significant source of information not only to search for a particular value or an event at a specific time, but also to detect some clinically-relevant patterns for temporal data.

View Article and Find Full Text PDF

Objective: In this paper, we extend a preliminary proposal and discuss in a deeper and more formal way an approach to evaluate temporal similarity between clinical workflow cases (i.e., executions of clinical processes).

View Article and Find Full Text PDF

Objective: This paper presents Visual MRI, an innovative tool for the magnetic resonance imaging (MRI) analysis of tumoral tissues. The main goal of the analysis is to separate each magnetic resonance image in meaningful clusters, highlighting zones which are more probably related with the cancer evolution. Such non-invasive analysis serves to address novel cancer treatments, resulting in a less destabilizing and more effective type of therapy than the chemotherapy-based ones.

View Article and Find Full Text PDF

Objective: The main aim of this paper is to propose and discuss promising directions of research in the field of temporal representation and reasoning in medicine, taking into account the recent scientific literature and challenging issues of current interest as viewed from the different research perspectives of the authors of the paper.

Background: Temporal representation and reasoning in medicine is a well-known field of research in the medical as well as computer science community. It encompasses several topics, such as summarizing data from temporal clinical databases, reasoning on temporal clinical data for therapeutic assessments, and modeling uncertainty in clinical knowledge and data.

View Article and Find Full Text PDF