Publications by authors named "Colvin M Redman"

Kell (ECE-3), a highly polymorphic blood group glycoprotein, displays more than 30 antigens that produce allo-antibodies and, on red blood cells (RBCs), is complexed through a single disulfide bond with the integral membrane protein, XK. XK is a putative membrane transporter whose absence results in a late onset form of neuromuscular abnormalities known as the McLeod syndrome. Although Kell glycoprotein is known to be an endothelin-3-converting enzyme, the full extent of its physiological function is unknown.

View Article and Find Full Text PDF

The McLeod phenotype is derived from various forms of XK gene defects that result in the absence of XK protein, and is defined hematologically by the absence of Kx antigen, weakening of Kell system antigens, and red cell acanthocytosis. Individuals with the McLeod phenotype usually develop late-onset neuromuscular abnormalities known as the McLeod syndrome (MLS). MLS is an X-linked multi-system disorder caused by absence of XK alone, or when the disorder is caused by large deletions, it may be accompanied with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CYBB), retinitis pigmentosa (RPGR), and ornithine transcarbamylase deficiency (OTC).

View Article and Find Full Text PDF

XK, a putative membrane transporter, is a component of the XK/Kell complex of the Kell blood group system. XK's substrate is unknown but absence of the protein, as occurs in the McLeod phenotype, is associated with red cell acanthocytosis and late onset central nervous system and neuromuscular abnormalities known as the McLeod syndrome. We have cloned two cDNAs, XPLAC (GenBank accession no.

View Article and Find Full Text PDF

The Kell blood group protein is a metalloendopeptidase that preferentially cleaves a Trp(21)-Ile(22) bond of big endothelin-3 producing bioactive endothelin-3. Kell is a polymorphic protein, and 25 different phenotypes, because of point mutations resulting in single amino acid substitutions, have been described. It was recently reported that a recombinant form of KEL1 (K, K1) phenotype, expressed in K562 and HEK293 cells, had no endothelin-3-converting activity, in contrast to the common KEL2 (k, K2) phenotype.

View Article and Find Full Text PDF

Background: Kell and XK, two distinct red blood cell membrane proteins, are linked by a disulfide bond and form the Kell blood group complex. Kell surface antigens are expressed early during erythropoiesis but the onset of expression of XK which carries the Kx antigen is unknown.

Study Design And Methods: To determine whether Kell and XK are synchronously expressed, sorted human hematopoietic progenitor cells and mouse progenitor cells of defined lineage were studied.

View Article and Find Full Text PDF

Elevated levels of both fibrinogen and cholesterol are risk factors in coronary artery disease. Previously we reported a metabolic link between fibrinogen and lipid metabolism in that HepG2 cells that were programmed by transfection of Bbeta-fibrinogen cDNA to overexpress fibrinogen exhibited increased synthesis of cholesterol and increased secretion of apolipoprotein B. In this study we demonstrate that oxysterols, which participate in maintaining cholesterol homeostasis, also down regulate fibrinogen expression.

View Article and Find Full Text PDF

Background: Kmod is an inherited rare RBC phenotype characterized by weak but detectable expression of high-incidence Kell antigens.

Study Design And Methods: The 19 exons and the intron-exon regions of the KEL gene from four unrelated Kmod individuals were sequenced and compared to wild-type KEL. To study the mechanisms by which the mutations result in depression of Kell antigens, mutant and wild-type Kell proteins were expressed in 293T cells and the amounts of protein present on the cell surface were determined.

View Article and Find Full Text PDF

In addition to its importance in transfusion, Kell protein is a member of the M13 family of zinc endopeptidases and functions as an endothelin-3-converting enzyme. To obtain information on the structure of Kell protein we built a model based on the crystal structure of the ectodomain of neutral endopeptidase 24.11 (NEP).

View Article and Find Full Text PDF

Background: The McLeod phenotype is defined by absence of Kx, weakening of Kell system antigens, and acanthocytosis. Individuals with the McLeod phenotype usually develop late-onset neuromuscular abnormalities. Gene deletions, insertions, and point mutations that affect RNA splicing or that lead to premature stop codons have been reported to cause the McLeod phenotype.

View Article and Find Full Text PDF