Publications by authors named "Colucci Manuel"

Article Synopsis
  • The study investigates how coagulation factor X (FX) impacts tumor growth in castration-resistant prostate cancer (CRPC) by examining the prostate tumor microenvironment in mouse models through single-cell RNA sequencing.
  • It finds that immunosuppressive neutrophils (PMN-MDSCs) produce FX, which activates pathways that enhance tumor cell growth independent of androgens, indicating a role for FX in cancer progression.
  • Targeting FXa could impede the oncogenic function of PMN-MDSCs and potentially improve treatment outcomes when combined with existing therapies, with high levels of FX and related markers correlating to worse survival in CRPC patients.
View Article and Find Full Text PDF

Background: Assessing urinary symptoms poses a complex challenge for primary care practitioners. In evaluating urological function, our approach involves constructing an urological age through the analysis of laboratory parameters and indicators of the urinary system.

Methods: Based on the National Health and Nutrition Examination Survey (NHANES), urological laboratory tests and age-related symptoms were included in the development of urological age (UA) and urological age acceleration (UAA) through the Klemera Doubal method.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Accumulating senescent cells contribute to aging and diseases, prompting research into botanical extracts for potential therapies that could target these issues.
  • A standardized extract of Salvia haenkei (HK) was found to extend both lifespan and healthspan in aged mice by reducing inflammation and markers of senescence while improving muscle strength and fur quality.
  • The study identified luteolin, a flavonoid in HK, as a compound that disrupts the interaction between the proteins p16 and CDK6, suggesting a mechanism through which HK promotes longevity by modulating cellular senescence.
View Article and Find Full Text PDF

Cellular senescence can exert dual effects in tumors, either suppressing or promoting tumor progression. The senescence-associated secretory phenotype (SASP), released by senescent cells, plays a crucial role in this dichotomy. Consequently, the clinical challenge lies in developing therapies that safely enhance senescence in cancer, favoring tumor-suppressive SASP factors over tumor-promoting ones.

View Article and Find Full Text PDF

Introduction: Although previous studies investigated the potential adverse effects of endocrine-disrupting chemicals (EDCs) on biological age acceleration and aging-related diseases, the mixed effect of multiple types of EDCs on biological age acceleration, including its potential underlying mechanism, remains unclear.

Methods: Data from the National Health and Nutrition Examination Survey (NHANES) were used to analyze biological age measures, including Klemera-Doubal method biological age (KDM-BA), phenotypic age, and homeostatic dysregulation (HD). Weight quantile sum (WQS) regression was performed to screen biological age-related EDCs (BA-EDCs) and assess the mixed effect of BA-EDCs on biological age acceleration and aging-related disease.

View Article and Find Full Text PDF
Article Synopsis
  • The human body is home to trillions of tiny creatures called microorganisms, which affect our health and can play a role in diseases like cancer.
  • Some studies found that certain gut and urinary bacteria might increase the risk of prostate cancer and are linked to changes in specific genes that can lead to cancer.
  • New research suggests that understanding and changing these bacteria could help in detecting and treating prostate cancer, using methods like probiotics or faecal transplants to improve patient care.
View Article and Find Full Text PDF

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs.

View Article and Find Full Text PDF

Androgen deprivation therapy (ADT) is a standard therapy for prostate cancer (PCa). Though disseminated disease is initially sensitive to ADT, an important fraction of the patients progresses to castration-resistant prostate cancer (CRPC). For this reason, the identification of novel effective therapies for treating CRPC is needed.

View Article and Find Full Text PDF

Cells subjected to treatment with anti-cancer therapies can evade apoptosis through cellular senescence. Persistent senescent tumor cells remain metabolically active, possess a secretory phenotype, and can promote tumor proliferation and metastatic dissemination. Removal of senescent tumor cells (senolytic therapy) has therefore emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Metastases account for most cancer-related deaths, yet the mechanisms underlying metastatic spread remain poorly understood. Recent evidence demonstrates that senescent cells, while initially restricting tumorigenesis, can induce tumor progression. Here, we identify the metalloproteinase inhibitor TIMP1 as a molecular switch that determines the effects of senescence in prostate cancer.

View Article and Find Full Text PDF