Publications by authors named "Colter M"

Mass-spectrometry-based screening of lipid extracts of wounded and unwounded leaves from a collection of 364 Arabidopsis thaliana T-DNA insertion lines produced lipid profiles that were scored on the number and significance of their differences from the leaf lipid profiles of wild-type plants. The analysis identified Salk_109175C, which displayed alterations in leaf chloroplast glycerolipid composition, including a decreased ratio between two monogalactosyldiacylglycerol (MGDG) molecular species, MGDG(18:3/16:3) and MGDG(18:3/18:3). Salk_109175C has a confirmed insertion in the At5g64790 locus; the insertion did not co-segregate with the recessive lipid phenotype in the F2 generation of a wild-type (Columbia-0) × Salk_109175C cross.

View Article and Find Full Text PDF

In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in leaf lipids under three heat stress regimens.

View Article and Find Full Text PDF

Background: Experimental abdominal aortic aneurysm (AAA) development can be pharmacologically suppressed by inhibiting matrix metalloproteinase-9 (MMP-9). Cyclooxygenase-2 (COX-2) inhibitors are potent anti-inflammatory agents that have been demonstrated to inhibit experimental aneurysm development. We hypothesized that treatment with MF-tricyclic, a selective COX-2 inhibitor, incorporated into rodent chow would inhibit aneurysm development in a rat AAA model.

View Article and Find Full Text PDF

Factor V is a plasma protein essential for blood coagulation. This protein is involved in activated protein C resistance, the most common inherited thrombotic disorder known. We utilized the polymerase chain reaction to clone the porcine factor V gene by generating overlapping clones amplified with primers chosen by comparison with known nucleotide sequences.

View Article and Find Full Text PDF

A unique avidin-biotin immunoadsorption system (CellPro CEPRATE SC) has been developed for the rapid clinical scale purification of CD34+ cells from bone marrow, mobilized peripheral blood (PBSC), or cord blood. This system has been used to treat more than 2500 patients worldwide in a variety of clinical studies. In the autologous transplantation setting, selection for CD34+ cells results in significant reduction (2- > 5 logs) of contaminating tumor cells in the enriched fractions, as documented using sensitive immunocytochemistry staining techniques or quantitative PCR analyses.

View Article and Find Full Text PDF