It is now well accepted that individual cells within a population will respond to treatment of the same drug in a heterogenous manner. Recent advances have allowed, for the first time, the quantitative analysis of the proteomes of single human cells by mass spectrometry. A major focus of many groups, including our own, has been to use this emerging technology to rapidly identify subpopulations of cells with unique drug response and adaptation methods.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) infection continues to promote neurocognitive impairment, mood disorders, and brain atrophy, even in the modern era of viral suppression. Brain lipids are vulnerable to HIV-associated energetic strain and may contribute to HIV-associated neurologic dysfunction due to alterations in lipid breakdown and structural lipid composition. HIV neuropathology is region dependent, yet there has not been comprehensive characterization of the spatial heterogeneity of brain lipids during infection that possibly impacts neurologic function.
View Article and Find Full Text PDFTenofovir (TFV) is a nucleotide reverse transcriptase inhibitor prescribed for the treatment and prevention of human immunodeficiency virus infection and the treatment of chronic hepatitis B virus infection. Here, we demonstrate that creatine kinase brain-type (CKB) can form tenofovir-diphosphate (TFV-DP), the pharmacologically active metabolite, in vitro and identify nine missense mutations (C74S, R96P, S128R, R132H, R172P, R236Q, C283S, R292Q, and H296R) that diminish this activity. Additional characterization of these mutations reveals that five (R96P, R132H, R236Q, C283S, and R292Q) have ATP dephosphorylation catalytic efficiencies less than 20% of those of the wild type (WT), and seven (C74S, R96P, R132H, R172P, R236Q, C283S, and H296P) induce thermal instabilities.
View Article and Find Full Text PDFTenofovir (TFV) is a nucleotide reverse transcriptase inhibitor prescribed for the treatment and prevention of human immunodeficiency virus infection, and the treatment of chronic hepatitis B virus infection. Here, we demonstrate that creatine kinase brain-type (CKB) can form tenofovir-diphosphate (TFV-DP), the pharmacologically active metabolite, in vitro, and identify nine missense mutations (C74S, R96P, S128R, R132H, R172P, R236Q, C283S, R292Q, and H296R) that diminish this activity. Additional characterization of these mutations reveal that five (R96P, R132H, R236Q, C283S, and R292Q) have ATP dephosphorylation catalytic efficiencies less than 20% of wild-type (WT), and seven (C74S, R96P, R132H, R172P, R236Q, C283S, and H296P) induce thermal instabilities.
View Article and Find Full Text PDFPigment patterns and skin appendages are prominent features of vertebrate skin. In zebrafish, regularly patterned pigment stripes and an array of calcified scales form simultaneously in the skin during post-embryonic development. Understanding the mechanisms that regulate stripe patterning and scale morphogenesis may lead to the discovery of fundamental mechanisms that govern the development of animal form.
View Article and Find Full Text PDFA recent study demonstrated a substantial increase in peptide signal and corresponding proteome coverage when employing 0.5% acetic acid (AA) as the ion pairing modifier in place of the 0.1% formic acid traditionally used in shotgun proteomics.
View Article and Find Full Text PDFRecent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types.
View Article and Find Full Text PDFProper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus.
View Article and Find Full Text PDFTenofovir (TFV) is a key component of human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP). TFV is a nucleotide analog reverse-transcriptase inhibitor prodrug that requires two separate phosphorylation reactions by intracellular kinases to form the active metabolite tenofovir-diphosphate (TFV-DP). Muscle-type creatine kinase (CKM) has previously been demonstrated to be the kinase most responsible for the phosphorylation of tenofovir-monophosphate (TFV-MP) to the active metabolite in colon tissue.
View Article and Find Full Text PDF