The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm.
View Article and Find Full Text PDFThis paper details the fabrication of ultrathin silicon nanowires (SiNWs) on a silicon-on-insulator (SOI) substrate as an electrode for the electro-oxidation and sensing of ethanol. The nanowire surfaces were prepared by a block copolymer (BCP) nanolithographic technique using low molecular weight symmetric poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) to create a nanopattern which was transferred to the substrate using plasma etching. The BCP orientation was controlled using a hydroxyl-terminated random polymer brush of poly(styrene)-random-poly(methyl methacrylate) (HO-PS-r-PMMA).
View Article and Find Full Text PDFBeilstein J Nanotechnol
October 2012
We investigate the ability of a focused helium ion beam to selectively modify and mill materials. The sub nanometer probe size of the helium ion microscope used provides lateral control not previously available for helium ion irradiation experiments. At high incidence angles the helium ions were found to remove surface material from a silicon lamella leaving the subsurface structure intact for further analysis.
View Article and Find Full Text PDFAs fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics.
View Article and Find Full Text PDF