Many examples exist of biological self-assembled structures that restructure in response to external stimuli, then return to their previous state over a defined time scale, but most synthetic investigations so far have focused on systems that switch between states representing energetic minima upon stimulus application. Here we report an approach in which triphenylphosphine is used as a chemical fuel to maintain Cu-based self-assembled metallosupramolecular architectures for defined periods of time. This method was used to exert control over the threading and dethreading of the ring of a pseudorotaxane's axle, as well as to direct the uptake and release of a guest from a metal-organic host.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2015
Host-guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using (19) F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2015
The subcomponent self-assembly of a bent dialdehyde ligand and different cationic and anionic templates led to the formation of two new metallosupramolecular architectures: a Fe(II) 4 L6 molecular rectangle was isolated following reaction of the ligand with iron(II) tetrafluoroborate, and a M5 L6 trigonal bipyramidal structure was constructed from either zinc(II) tetrafluoroborate or cadmium(II) trifluoromethanesulfonate. The spatially constrained arrangement of the three equatorial metal ions in the M5 L6 structures was found to induce small-molecule transformations. Atmospheric carbon dioxide was fixed as carbonate and bound to the equatorial metal centers in both the Zn5 L6 and Cd5 L6 assemblies, and sulfur dioxide was hydrated and bound as the sulfite dianion in the Zn5 L6 structure.
View Article and Find Full Text PDFWe report on the assembly of 2,6-pyridinedicarboxamide ligands (1) with point chirality about lanthanide metal ion (Ln(3+)) templates, in which the helical chirality of the resulting entwined 3:1 ligand:metal complexes is covalently captured by ring-closing olefin metathesis to form topologically chiral molecular trefoil knots of single handedness. The ligands do not self-sort (racemic ligands form a near-statistical mixture of homoleptic and heteroleptic lanthanide complexes), but the use of only (R,R)-1 leads solely to a trefoil knot of Λ-handedness, whereas (S,S)-1 forms the Δ-trefoil knot with complete stereoselectivity. The knots and their isomeric unknot macrocycles were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography and the expression of the chirality that results from the topology of the knots studied by circular dichroism.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
The reaction of 2,6-diformylpyridine with diverse amines and Pd(II) ions gave rise to a variety of metallosupramolecular species, in which the Pd(II) ion is observed to template a tridentate bis(imino)pyridine ligand. These species included a mononuclear complex as well as [2+2] and [3+3] macrocycles. The addition of pyridine-containing macrocyclic capping ligands allows for topological complexity to arise, thereby enabling the straightforward preparation of structures that include a [2]catenane, a [2]rotaxane, and a doubly threaded [3]rotaxane.
View Article and Find Full Text PDFSurface-confined double-helical polymers are generated by dynamic covalent assembly with preservation of chirality, metal coordination environment, and oxidation state of the precursor complexes. This one-step procedure involves both in solution and solution-to-surface assembly and resulted in chiral interfaces where pairs of ligands are wrapped around arrays of metal ions. In-plane XRD experiments revealed the formation of a highly ordered structure along the substrate surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2013
Over the last two decades the field of metallosupramolecular self-assembly has emerged as a promising research area for the development of intricate, three-dimensional structures of increasing complexity and functionality. The advent of this area of research has strongly benefited from design principles that considered the ligand geometry and metal coordination geometry, thus opening up routes towards rationally designed classical (Archimedean or Platonic) architectures. In this tutorial review, we will focus on more recent developments in the design and synthesis of three-dimensional suprastructures which have non-classical architectures (non-Archimedean/Platonic solids) and we will explicitly address the secondary effects responsible for their formation.
View Article and Find Full Text PDF