Natural products (NPs) or their derivatives represent a large proportion of drugs that successfully progress through clinical trials to approval. This study explores the presence of NPs in both early- and late-stage drug discovery to determine their success rate, and the factors or features of natural products that contribute to such success. As a proxy for early drug development stages, we analyzed patent applications over several decades, finding a consistent proportion of NP, NP-derived, and synthetic-compound-based patent documents, with the latter group outnumbering NP and NP-derived ones (approximately 77% vs 23%).
View Article and Find Full Text PDFPlants are one of the primary sources of natural products for drug development. However, despite centuries of research, only a limited region of the phytochemical space has been studied. To understand the scope of what is explored versus unexplored in the phytochemical space, we begin by reconstructing the known chemical space of the plant kingdom, mapping the distribution of secondary metabolites, chemical classes, and plants traditionally used for medicinal purposes (i.
View Article and Find Full Text PDFFor millennia, numerous cultures and civilizations have relied on traditional remedies derived from plants to treat a wide range of conditions and ailments. Here, we systematically analyzed ethnobotanical patterns across taxonomically related plants, demonstrating that congeneric medicinal plants are more likely to be used for treating similar indications. Next, we reconstructed the phytochemical space covered by medicinal plants to reveal that (i) taxonomically related medicinal plants cover a similar phytochemical space, and (ii) chemical similarity correlates with similar therapeutic usage.
View Article and Find Full Text PDFNetwork-based approaches are becoming increasingly popular for drug discovery as they provide a systems-level overview of the mechanisms underlying disease pathophysiology. They have demonstrated significant early promise over other methods of biological data representation, such as in target discovery, side effect prediction and drug repurposing. In parallel, an explosion of -omics data for the deep characterization of biological systems routinely uncovers molecular signatures of disease for similar applications.
View Article and Find Full Text PDFExpression of T-cell checkpoint receptors can compromise antitumor immunity. Blockade of these receptors, notably PD-1 and LAG-3, which become expressed during T-cell activation with vaccination, can improve antitumor immunity. We evaluated whether T-cell checkpoint expression could be separated from T-cell activation in the context of innate immune stimulation with TLR agonists.
View Article and Find Full Text PDFAntitumor vaccines encoding self-antigens generally have low immunogenicity in clinical trials. Several approaches are aimed at improving vaccine immunogenicity, including efforts to alter encoded epitopes. Immunization with epitopes altered for increased affinity for the major histocompatibility complex (MHC) or T-cell receptor (TCR) elicits greater numbers of CD8 T cells but inferior antitumor responses.
View Article and Find Full Text PDFDNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation.
View Article and Find Full Text PDFBackground: The androgen receptor (AR) is a key oncogenic driver of prostate cancer, and has been the primary focus of prostate cancer treatment for several decades. We have previously demonstrated that the AR is also an immunological target antigen, recognized in patients with prostate cancer, and targetable by means of vaccines in rodent models with delays in prostate tumor growth. The current study was performed to determine the safety and immunological efficacy of a GMP-grade plasmid DNA vaccine encoding the ligand-binding domain (LBD) of the AR, pTVG-AR.
View Article and Find Full Text PDFIncreasing transgene expression has been a major focus of attempts to improve DNA vaccine-induced immunity in both preclinical studies and clinical trials. Novel mini-intronic plasmids (MIPs) have been shown to cause elevated and sustained transgene expression . We sought to test the antitumor activity of a MIP, compared to standard DNA plasmid immunization, using the tumor-specific antigen SSX2 in an HLA-A2-restricted tumor model.
View Article and Find Full Text PDFIn spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA.
View Article and Find Full Text PDFProstate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens.
View Article and Find Full Text PDFAtherosclerosis is the primary cause of CAD and cerebrovascular disease. Endothelin (ET)-1 is a vasoconstrictive peptide implicated in Atherosclerosis pathology. Endothelin-converting enzyme (ECE) is a membrane metalloprotease that generates endothelin.
View Article and Find Full Text PDF