Publications by authors named "Collins Morang'a"

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites.

View Article and Find Full Text PDF

Backgrounds: The resurgence of , a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Noncoding RNAs (ncRNAs) form a vast class of RNAs that do not code for proteins and are ubiquitous in the insect genome.

View Article and Find Full Text PDF

Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited.

View Article and Find Full Text PDF

We describe the MalariaGEN Pf7 data resource, the seventh release of genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.

View Article and Find Full Text PDF
Article Synopsis
  • A lot of money has been spent on studying the COVID-19 virus in Africa, leading to over 100,000 virus samples being analyzed to understand the spread of the disease.
  • *More countries in Africa are now able to do these studies themselves, which helps them get results faster and keep a close watch on the virus.
  • *To keep fighting COVID and other diseases, more funding and support for testing and research in Africa is really important for the future.
View Article and Find Full Text PDF
Article Synopsis
  • * In this case, an individual was superinfected with two SARS-CoV-2 variants, Alpha (B.1.1.7) and Epsilon (B.1.429), which led to unexpected genomic characteristics in the Alpha variant.
  • * Full genome sequencing indicated that the Alpha variant made up about 75% of the viral presence, with the Epsilon variant at around 20%, and revealed multiple recombinant forms that could influence the virus's evolution.
View Article and Find Full Text PDF

Plasmodium falciparum causes malaria, and its resistance to artemisinin (ART) - a drug used for managing malaria - threatens to interfere with the effective control of malaria. ART resistance (ARTr) is driven by increased tolerance to oxidative stress and reduced haemoglobin trafficking to the food vacuole. We discuss how extracellular vesicles (EVs) may play a role in developing ARTr.

View Article and Find Full Text PDF

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic in Africa has varied significantly across countries, and its overall impact remains unclear.
  • An analysis of 8,746 genomes from 33 African countries indicated that most outbreaks originated from Europe before international travel restrictions took effect.
  • As the pandemic continued, increased movement and local transmission led to the emergence of several variants within Africa, emphasizing the need for a strong pandemic response on the continent to prevent becoming a source of new variants.
View Article and Find Full Text PDF
Article Synopsis
  • The case fatality rate for COVID-19 in Ghana has decreased from 2% in March 2020 to below 1% since May 2020, indicating improvements in managing the virus.
  • Researchers sequenced 46 whole genomes of SARS-CoV-2 in Ghana from different time periods, identifying various clades, with notable clustering into five clades for early samples and three for later samples.
  • Most analyzed genomes closely mirrored the original Wuhan strain, suggesting that the genetic diversity in Ghana is low, which aligns with the lower transmission rates of the virus in the country.
View Article and Find Full Text PDF

Glycophorins are the most abundant sialoglycoproteins on the surface of human erythrocyte membranes. Genetic variation in glycophorin region of human chromosome 4 (containing , , and genes) is of interest because the gene products serve as receptors for pathogens of major public health interest, including , , Influenza virus, El Tor Hemolysin, and . A large structural rearrangement and hybrid glycophorin variant, known as , which was identified in East African populations, has been linked with a 40% reduction in risk for severe malaria.

View Article and Find Full Text PDF

Background: Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI), remains a challenge.

View Article and Find Full Text PDF

Despite significant progress in controlling malaria, the disease remains a global health burden. The intricate interactions the parasite Plasmodium falciparum has with its host allows it to grow and multiply in human erythrocytes. The mechanism by which P.

View Article and Find Full Text PDF

Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as and parasites such as . This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients' health records to give advice on treatment options as well as potential drug and vaccine interactions.

View Article and Find Full Text PDF

Background: Malaria rapid diagnostic tests (RDTs) are a great achievement in implementation of parasite based diagnosis as recommended by World Health Organization. A major drawback of RDTs is lack of positive controls to validate different batches/lots at the point of care. Dried Plasmodium falciparum-infected samples with the RDT target antigens have been suggested as possible positive control but their utility in resource limited settings is hampered by rapid loss of activity over time.

View Article and Find Full Text PDF

Background: Early and accurate diagnosis of malaria is important in treatment as well as in the clinical evaluation of drugs and vaccines. Evaluation of Giemsa-stained smears remains the gold standard for malaria diagnosis, although diagnostic errors and potential bias estimates of protective efficacy have been reported in practice. Plasmodium genus fluorescent in situ hybridization (P-Genus FISH) is a microscopy-based method that uses fluorescent labelled oligonucleotide probes targeted to pathogen specific ribosomal RNA fragments to detect malaria parasites in whole blood.

View Article and Find Full Text PDF

Background: One objective of the Kenya National Malaria Strategy 2009-2017 is scaling access to prompt diagnosis and effective treatment. In 2013, a quality assurance (QA) pilot was implemented to improve accuracy of malaria diagnostics at selected health facilities in low-transmission counties of Kenya. Trends in malaria diagnostic and QA indicator performance during the pilot are described.

View Article and Find Full Text PDF