Publications by authors named "Collingridge G"

A major intracellular messenger implicated in synaptic plasticity and cognitive functions both in health and disease is cyclic GMP (cGMP). Utilizing a photoactivatable guanylyl cyclase (BlgC) actuator to increase cGMP in dentate granule neurons of the hippocampus by light, we studied the effects of spatiotemporal cGMP elevations in synaptic and cognitive functions. At medial perforant path to dentate gyrus (MPP-DG) synapses, we found enhanced long-term potentiation (LTP) of synaptic responses when postsynaptic cGMP was elevated during the induction period.

View Article and Find Full Text PDF

Long-term potentiation (LTP) is a widely studied phenomenon since the underlying molecular mechanisms are widely believed to be critical for learning and memory and their dysregulation has been implicated in many brain disorders affecting cognitive functions. Central to the induction of LTP, in most pathways that have been studied in the mammalian CNS, is the N-methyl-D-aspartate receptor (NMDAR). Philippe Ascher discovered that the NMDAR is subject to a rapid, highly voltage-dependent block by Mg.

View Article and Find Full Text PDF

Stress induces aversive memory overgeneralization, a hallmark of many psychiatric disorders. Memories are encoded by a sparse ensemble of neurons active during an event (an engram ensemble). We examined the molecular and circuit processes mediating stress-induced threat memory overgeneralization in mice.

View Article and Find Full Text PDF

The cellular prion protein, PrPC, has been postulated to function as a receptor for α-synuclein, potentially facilitating cell-to-cell spreading and/or toxicity of α-synuclein aggregates in neurodegenerative disorders such as Parkinson's disease. Previously, we generated the "Salt (S)" and "No Salt (NS)" strains of α-synuclein aggregates that cause distinct pathological phenotypes in M83 transgenic mice overexpressing A53T-mutant human α-synuclein. To test the hypothesis that PrPC facilitates the propagation of α-synuclein aggregates, we produced M83 mice that either express or do not express PrPC.

View Article and Find Full Text PDF

Objective: -related neurodevelopmental disorder ( -NDD) is characterized by clinically significant variation in the gene, which encodes the obligatory GluN1 subunit of N-methyl-D-aspartate receptors (NMDARs). The identified p.Tyr647Ser (Y647S) variant - carried by a 33-year-old female with seizures and intellectual disability - is located in the M3 helix in the GluN1 transmembrane domain.

View Article and Find Full Text PDF

The corticostriatal connection plays a crucial role in cognitive, emotional, and motor control. However, the specific roles and synaptic transmissions of corticostriatal connection are less studied, especially the corticostriatal transmission from the anterior cingulate cortex (ACC). Here, a direct glutamatergic excitatory synaptic transmission in the corticostriatal projection from the ACC is found.

View Article and Find Full Text PDF

We introduce and summarize reviews and research papers by speakers at a discussion meeting on 'Long-term potentiation: 50 years on' held at the Royal Society, London, on 20-21 November 2023. The meeting followed earlier discussion meetings marking the 30th and 40th anniversaries of the discovery of long-term potentiation. These new contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for our understanding of the neurobiological basis of many forms of learning and memory and a wide spectrum of neurological and cognitive disorders.

View Article and Find Full Text PDF

-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity.

View Article and Find Full Text PDF

The roles of Ca-induced calcium release in synaptic plasticity and metaplasticity are poorly understood. The present study has addressed the role of intracellular Ca stores in long-term potentiation (LTP) and a form of heterosynaptic metaplasticity known as synaptic tagging and capture (STC) at CA1 synapses in mouse hippocampal slices. The effects of two compounds, ryanodine and cyclopiazonic acid (CPA), were examined on LTP induced by three distinct induction protocols: weak (w), compressed (c) and spaced (s) theta-burst stimulation (TBS).

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS.

View Article and Find Full Text PDF
Article Synopsis
  • Fragile X syndrome (FXS) affects executive function and memory, and this study reviews the role of breeding strategies in understanding these impairments in a mouse model.
  • The research highlights significant deficits in short-term potentiation (STP), long-term potentiation (LTP), and contextual fear conditioning (CFC) in knockout (KO) mice compared to non-littermate wild-type (WT) mice, although the expression of NMDAR subunits remained unchanged.
  • Notably, the effectiveness of an NMDAR modulator (UBP714) to enhance LTP induction varied based on the breeding strategy used, indicating that these strategies may cause inconsistencies in research findings related to FXS.
View Article and Find Full Text PDF

The modulation of synaptic efficacy by group I metabotropic glutamate receptors is dysregulated in several neurodevelopmental and neurodegenerative disorders impacting cognitive function. The progression and severity of these and other disorders are affected by biological sex, and differences in metabotropic glutamate receptor signalling have been implicated in this effect. In this study, we have examined whether there are any sex-dependent differences in a form of long-term depression of synaptic responses that is triggered by application of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG).

View Article and Find Full Text PDF

Synaptic weakening and loss are well-correlated with the pathology of Alzheimer's disease (AD). Oligomeric amyloid beta (oAβ) is considered a major synaptotoxic trigger for AD. Recent studies have implicated hyperactivation of the complement cascade as the driving force for loss of synapses caused by oAβ.

View Article and Find Full Text PDF

The great potential for NMDA receptor modulators as druggable targets in neurodegenerative disorders has been met with limited success. Considered one of the rare exceptions, memantine has consistently demonstrated restorative and prophylactic properties in many AD models. In clinical trials memantine slows the decline in cognitive performance associated with AD.

View Article and Find Full Text PDF

Over 50% of depressed patients show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Conventional therapy takes weeks to months to improve symptoms. Ketamine has rapid onset antidepressant effects.

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK3) mediates phosphorylation of several hundred proteins, and its aberrant activity is associated with an array of prevalent disorders. The two paralogs, GSK3α and GSK3β, are expressed ubiquitously and fulfill common as well as unique tasks throughout the body. In the CNS, it is established that GSK3 is involved in synaptic plasticity.

View Article and Find Full Text PDF

In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown.

View Article and Find Full Text PDF

When decellularizing kidneys, it is important to maintain the integrity of the acellular extracellular matrix (ECM), including associated adhesion proteins and growth factors that allow recellularized cells to adhere and migrate according to ECM specificity. Kidney decellularization requires the ionic detergent sodium dodecyl sulfate (SDS); however, this results in a loss of ECM proteins important for cell adherence, migration, and growth, particularly glycosaminoglycan (GAG)-associated proteins. Here, we demonstrate that using submicellar concentrations of SDS results in a greater retention of structural proteins, GAGs, growth factors, and cytokines.

View Article and Find Full Text PDF

40 years ago, Jeff Watkins and Richard (Dick) Evans (Watkins and Evans, 1981) published their review on excitatory amino acids. The review, combined with the tools that they and their colleagues developed, significantly changed the field of neurobiology. This Special Issue focused on NMDA receptors is one of six that commemorate this anniversary.

View Article and Find Full Text PDF
Article Synopsis
  • Glycogen synthase kinase 3 (GSK-3) is a protein kinase involved in regulating cellular processes, particularly synaptic plasticity, and its inhibition affects long-term depression (LTD) in the brain.
  • A selective GSK-3 inhibitor, CT99021, was administered to healthy mice, effectively blocking LTD in the hippocampus without adversely impacting activities like locomotion or anxiety.
  • The study revealed that inhibiting GSK-3 improved learning rates in tasks like the Morris water maze and T-maze, indicating its role in enhancing spatial memory acquisition and recall.
View Article and Find Full Text PDF

On the occasion of the 40 year anniversary of the hugely impactful review by Richard (Dick) Evans and Jeff Watkins, we describe how their work has impacted the field of synaptic plasticity. We describe their influence in each of the major glutamate receptor subtypes: AMPARs, NMDARs, KARs and mGluRs. Particular emphasis is placed on how their work impacted our own studies in the hippocampus.

View Article and Find Full Text PDF

Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands.

View Article and Find Full Text PDF

(-)-Arctigenin and a series of new analogues have been synthesised and then tested for their potential as AMPA and kainate receptor antagonists of human homomeric GluA1 and GluK2 receptors expressed in HEK293 cells using a Ca influx assay. In general, these compounds showed antagonist activity at both receptors with greater activity evident at AMPARs. Schild analysis indicates that a spirocyclic analogue 6c acts as a non-competitive antagonist.

View Article and Find Full Text PDF