Publications by authors named "Collinet B"

In Archaea and Eukaryotes, the synthesis of a universal tRNA modification, N-threonyl-carbamoyl adenosine (tA), is catalyzed by the KEOPS complex composed of Kae1, Bud32, Cgi121, and Pcc1. A fifth subunit, Gon7, is found only in Fungi and Metazoa. Here, we identify and characterize a fifth KEOPS subunit in Archaea.

View Article and Find Full Text PDF

The tRNA modification N6-threonylcarbamoyladenosine (t6A) is universally conserved in all organisms. In bacteria, the biosynthesis of t6A requires four proteins (TsaBCDE) that catalyze the formation of t6A via the unstable intermediate l-threonylcarbamoyl-adenylate (TC-AMP). While the formation and stability of this intermediate has been studied in detail, the mechanism of its transfer to A37 in tRNA is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • N-threonyl-carbamoylation of adenosine 37 in ANN-type tRNAs is crucial for accurate protein translation, utilizing the YRDC and OSGEP enzymes.
  • Mutations in the KEOPS complex subunits have been linked to Galloway-Mowat syndrome, with YRDC mutations causing severe symptoms and GON7 mutations resulting in milder forms.
  • The crystal structure of a GON7 subcomplex reveals that GON7 becomes partially structured when interacting with LAGE3, indicating its role in stabilizing the KEOPS complex.
View Article and Find Full Text PDF

The universal N6-threonylcarbamoyladenosine (t6A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA.

View Article and Find Full Text PDF

-threonyl-carbamoyl adenosine (tA) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). tA stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of tA, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes.

View Article and Find Full Text PDF

Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality.

View Article and Find Full Text PDF

The yeast KEOPS protein complex comprising Kae1, Bud32, Cgi121, Pcc1 and Gon7 is responsible for the essential tRNA threonylcarbamoyladenosine (t(6)A) modification. Deletion of genes coding for the KEOPS subunits also affects telomere elongation and transcriptional regulation. In the present work, the crystal structure of Bud32/Cgi121 in complex with ADP revealed that ADP is bound in the catalytic site of Bud32 in a canonical manner characteristic of Protein Kinase A (PKA) family proteins.

View Article and Find Full Text PDF

The essential and universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position 37 of ANN-decoding tRNAs plays a pivotal role in translational fidelity through enhancement of the cognate codon recognition and stabilization of the codon-anticodon interaction. In Escherichia coli, the YgjD (TsaD), YeaZ (TsaB), YjeE (TsaE) and YrdC (TsaC) proteins are necessary and sufficient for the in vitro biosynthesis of t(6)A, using tRNA, ATP, L-threonine and bicarbonate as substrates. YrdC synthesizes the short-lived L-threonylcarbamoyladenylate (TCA), and YgjD, YeaZ and YjeE cooperate to transfer the L-threonylcarbamoyl-moiety from TCA onto adenosine at position 37 of substrate tRNA.

View Article and Find Full Text PDF
Article Synopsis
  • Natural transformation in bacteria relies on DNA recombination, with RecA being key to the homologous recombination pathway by facilitating DNA strand invasion.
  • DprA acts as an important partner of RecA, ensuring its effective loading onto incoming single-stranded DNA (ssDNA) through specific binding interactions.
  • The study identified key regions on both RecA and DprA that mediate their interaction, suggesting a model where DprA caps the RecA filament and influences both proteins' roles in DNA binding.
View Article and Find Full Text PDF

N(6)-threonylcarbamoyladenosine (t(6)A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon-anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t(6)A synthesis in Saccharomyces cerevisiae and Escherichia coli.

View Article and Find Full Text PDF

The structural and functional analysis of the protein AvtR encoded by Acidianus filamentous virus 6 (AFV6), which infects the archaeal genus Acidianus, revealed its unusual structure and involvement in transcriptional regulation of several viral genes. The crystal structure of AvtR (100 amino acids) at 2.6-Å resolution shows that it is constituted of a repeated ribbon-helix-helix (RHH) motif, which is found in a large family of bacterial transcriptional regulators.

View Article and Find Full Text PDF

Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest.

View Article and Find Full Text PDF

We present here the 2.6A resolution crystal structure of the pT26-6p protein, which is encoded by an ORF of the plasmid pT26-2, recently isolated from the hyperthermophilic archaeon, Thermococcus sp. 26,2.

View Article and Find Full Text PDF

Viruses infecting hyperthermophilic archaea have intriguing morphologies and genomic properties. The vast majority of their genes do not have homologs other than in other hyperthermophilic viruses, and the biology of these viruses is poorly understood. As part of a structural genomics project on the proteins of these viruses, we present here the structure of a 102 amino acid protein from acidianus filamentous virus 1 (AFV1-102).

View Article and Find Full Text PDF

The EKC/KEOPS yeast complex is involved in telomere maintenance and transcription. The Bud32p and kinase-associated endopeptidase 1 (Kaelp) components of the complex are totally conserved in eukarya and archaea. Their genes are fused in several archaeal genomes, suggesting that they physically interact.

View Article and Find Full Text PDF

HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition.

View Article and Find Full Text PDF

We have designed, synthesized, and evaluated the inhibitory activity and metabolic stability of new peptidomimetic molecular tongs based on a naphthalene scaffold for inhibiting HIV-1 protease dimerization. Peptidomimetic motifs were inserted into one peptidic strand to make it resistant to proteolysis. The peptidic character of the molecular tongs can be decreased without changing the way they inhibit dimerization.

View Article and Find Full Text PDF

Anti-poxvirus therapies are currently limited to cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine], but drug-resistant strains have already been characterized. In the aim of finding a new target, the thymidylate (TMP) kinase from vaccinia virus, the prototype of Orthopoxvirus, has been overexpressed in Escherichia coli after cloning the gene (A48R). Specific inhibitors and alternative substrates of pox TMP kinase should contribute to virus replication inhibition.

View Article and Find Full Text PDF

The transcriptional antiterminator protein LicT regulates the expression of Bacillus subtilis operons involved in beta-glucoside metabolism. It consists of an N-terminal RNA-binding domain (co-antiterminator (CAT)) and two phosphorylatable phosphotransferase system regulation domains (PRD1 and PRD2). In the activated state, each PRD forms a dimeric unit with the phosphorylation sites totally buried at the dimer interface.

View Article and Find Full Text PDF

We determined the three-dimensional crystal structure of the protein YML079wp, encoded by a hypothetical open reading frame from Saccharomyces cerevisiae to a resolution of 1.75 A. The protein has no close homologs and its molecular and cellular functions are unknown.

View Article and Find Full Text PDF

New "molecular tongs" based on naphthalene and quinoline scaffolds linked to two peptidic strands were synthesized. They were designed to prevent dimerization of HIV-1 protease by targeting the antiparallel beta-sheet involving N- and C-termini of each monomer. Compared to "molecular tongs" previously described (Bouras, A.

View Article and Find Full Text PDF

We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted.

View Article and Find Full Text PDF

The South-Paris Yeast Structural Genomics Project aims at systematically expressing, purifying and determining the structure of S. cerevisiae proteins with no detectable homology to proteins of known structure. We brought 250 yeast ORFs to expression in E.

View Article and Find Full Text PDF