Publications by authors named "Collin Ward"

Photo-dissolution, the photochemical production of water-soluble species from oil, can transfer oil-derived dissolved organic carbon (DOC) from floating surface slicks to the underlying seawater. Photo-dissolution was likely a quantitatively relevant fate process for the Macondo crude oil spilled during the 2010 spill, but the importance of photo-dissolution for other oils is poorly constrained. This study evaluated the photo-dissolution reactivities (apparent quantum yields) and modeled rates for oils with diverse physical properties and chemical compositions, including an ultra low sulfur fuel oil (ULSFO).

View Article and Find Full Text PDF

While plastic pollution threatens ecosystems and human health, the use of plastic products continues to increase. Limiting its harm requires design strategies for plastic products informed by the threats that plastics pose to the environment. Thus, we developed a sustainability metric for the ecodesign of plastic products with low environmental persistence and uncompromised performance.

View Article and Find Full Text PDF

Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean.

View Article and Find Full Text PDF

Photochemical weathering transforms petroleum oil and changes its bulk physical properties, as well as its partitioning into seawater. This transformation process is likely to occur in a cold water marine oil spill, but little is known about the behavior of photochemically weathered oil in cold water. We quantified the effect of photochemical weathering on oil properties and partitioning across temperatures.

View Article and Find Full Text PDF

Molecular weight (MW) is a key control of plastic polymer properties and their fate in the environment. However, the primary tool used to determine plastic MW, gel permeation chromatography (GPC), has major limitations, such as low precision and accuracy, requirements for dedicated instrumentation, production of high volumes of hazardous waste, and large sample sizes. In this study, we describe, validate, and apply a diffusion-ordered spectroscopy (DOSY) method for polymer MW determinations, with a focus on applications for consumer plastics.

View Article and Find Full Text PDF

Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity.

View Article and Find Full Text PDF

In late May 2021, the M/V container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or "nurdles" (∼1680 tons), littering the country's coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment.

View Article and Find Full Text PDF

The biogeochemical fluxes that cycle oxygen (O) play a critical role in regulating Earth's climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O content, and that they have predictable, fixed isotope effects.

View Article and Find Full Text PDF

Photo-induced toxicity of petroleum products and polycyclic aromatic compounds (PACs) is the enhanced toxicity caused by their interaction with ultraviolet radiation and occurs by two distinct mechanisms: photosensitization and photomodification. Laboratory approaches for designing, conducting, and reporting of photo-induced toxicity studies are reviewed and recommended to enhance the original Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) protocols which did not address photo-induced toxicity. Guidance is provided on conducting photo-induced toxicity tests, including test species, endpoints, experimental design and dosing, light sources, irradiance measurement, chemical characterization, and data reporting.

View Article and Find Full Text PDF

Sunlight chemically transforms marine plastics into a suite of products, with formulation─the specific mixture of polymers and additives─driving rates and products. However, the effect of light-driven transformations on subsequent microbial lability is poorly understood. Here, we examined the interplay between photochemical and biological degradation of fabrics made from cellulose diacetate (CDA), a biobased polymer used commonly in consumer products.

View Article and Find Full Text PDF

Crude oil released into the environment undergoes weathering processes that gradually change its composition and toxicity. Co-exposure to petroleum mixtures and other stressors, including ultraviolet (UV) radiation, may lead to synergistic effects and increased toxicity. Laboratory studies should consider these factors when testing the effects of oil exposure on aquatic organisms.

View Article and Find Full Text PDF

Oxygenation reactions initiated by sunlight can transform insoluble components of crude oil at sea into water-soluble products, a process called photo-dissolution. First reported a half century ago, photo-dissolution has never been included in spill models because key parameters required for rate modeling were unknown, including the wavelength and photon dose dependence. Here, we experimentally quantified photo-dissolution as a function of wavelength and photon dose, making possible a sensitivity analysis of environmental variables in hypothetical spill scenarios and a mass balance assessment for the 2010 (DwH) spill.

View Article and Find Full Text PDF

In May 2021, the cargo ship caught fire 18 km off the west coast of Sri Lanka and spilled ∼1680 tons of spherical pieces of plastic or "nurdles" (∼5 mm; white in color). Nurdles are the preproduction plastic used to manufacture a wide range of end products. Exposure to combustion, heat, and chemicals led to agglomeration, fragmentation, charring, and chemical modification of the plastic, creating an unprecedented complex spill of visibly burnt plastic and unburnt nurdles.

View Article and Find Full Text PDF

Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film.

View Article and Find Full Text PDF

The photodegradation rates of floating marine plastics govern their environmental lifetimes, but the controls on this process remain poorly understood. Photodegradation of these materials has so far been studied under ideal conditions in the absence of environmental factors such as biofouling, which may slow photochemical transformation rates through light screening. To investigate this interaction, we incubated different plastics in continuous flow seawater mesocosms to follow (i) the extent of biofilm growth on the samples and (ii) decreases in light transmittance through the samples over time.

View Article and Find Full Text PDF

Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analysed for gene expression and DOM chemical composition.

View Article and Find Full Text PDF

The weathering of crude oil at sea has been researched for nearly half a century. However, there have been relatively few opportunities to validate laboratory-based predictions about the rates, relative importance, and controls of oil weathering processes (e.g.

View Article and Find Full Text PDF

In sunlit waters, photodegradation of dissolved organic matter (DOM) yields completely oxidized carbon (i.e., CO) as well as a suite of partially oxidized compounds formed from oxygen incorporation (i.

View Article and Find Full Text PDF

About half of the surface oil floating on the Gulf of Mexico in the aftermath of the 2010 Deepwater Horizon spill was transformed into oxygenated hydrocarbons (OxHC) within days to weeks. These OxHC persist for years in oil/sand aggregates in nearshore and beach environments, and there is concern that these aggregates might represent a long-term source of toxic compounds. However, because this OxHC fraction is a continuum of transformation products that are not well chemically characterized, it is not included in current oil spill fate and effect models.

View Article and Find Full Text PDF

Chemical dispersants are one of many tools used to mitigate the overall environmental impact of oil spills. In principle, dispersants break up floating oil into small droplets that disperse into the water column where they are subject to multiple fate and transport processes. The effectiveness of dispersants typically decreases as oil weathers in the environment.

View Article and Find Full Text PDF

Following the Deepwater Horizon (DWH) blowout in 2010, oil floated on the Gulf of Mexico for over 100 days. In the aftermath of the blowout, substantial accumulation of partially oxidized surface oil was reported, but the pathways that formed these oxidized residues are poorly constrained. Here we provide five quantitative lines of evidence demonstrating that oxidation by sunlight largely accounts for the partially oxidized surface oil.

View Article and Find Full Text PDF