Publications by authors named "Collin Ortals"

By integrating soil and water assessment tool (SWAT) modeling and land use and land cover (LULC) based multi-variable statistical analysis, this study aimed to identify driving factors, potential thresholds, and critical source areas (CSAs) to enhance water quality in southern Alabama and northwest Florida's Choctawhatchee Watershed. The results revealed the significance of forest cover and of the lumped developed areas and cultivated crops ("Source Areas") in influencing water quality. The stepwise linear regression analysis based on self-organizing maps (SOMs) showed that a negative correlation between forest percent cover and total nitrogen (TN), organic nitrogen (ORGN), and organic phosphorus (ORGP), highlighting the importance of forests in reducing nutrient loads.

View Article and Find Full Text PDF

The fate of coastal ecosystems depends on their ability to keep pace with sea-level rise-yet projections of accretion widely ignore effects of engineering fauna. Here, we quantify effects of the mussel, Geukensia demissa, on southeastern US saltmarsh accretion. Multi-season and -tidal stage surveys, in combination with field experiments, reveal that deposition is 2.

View Article and Find Full Text PDF

Coastal ecosystems such as sand dunes, mangrove forests, and salt marshes provide natural storm protection for vulnerable shorelines. At the same time, storms erode and redistribute biological materials among coastal systems via wrack. Yet how such cross-ecosystem subsidies affect post-storm recovery is not well understood.

View Article and Find Full Text PDF

Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer-the marsh crab -is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels.

View Article and Find Full Text PDF