IA is a 68 amino acid peptide inhibitor of yeast proteinase A (YPRA) characterized as a random coil when in solution, folding into an N-terminal amphipathic alpha helix for residues 2-32 when bound to YPRA, with residues 33-68 unresolved in the crystal complex. Circular dichroism (CD) spectroscopy results show that amino acid substitutions that remove hydrogen-bonding interactions observed within the hydrophilic face of the N-terminal domain (NTD) of IA-YPRA crystal complex reduce the 2,2,2-trifluoroethanol (TFE)-induced helical transition in solution. Although nearly all substitutions decreased TFE-induced helicity compared to wild-type (WT), each construct did retain helical character in the presence of 30% (v/v) TFE and retained disorder in the absence of TFE.
View Article and Find Full Text PDFDinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber-Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high-spin metal centers; however, iron-dinitrogen coordination chemistry remains dominated by low-valent states, contrasting the enzyme systems. Here, we report a high-spin mixed-valent cis-(μ-1,2-dinitrogen)diiron(I/II) complex [(FeBr) (μ-N )L ] (2), where [L ] is a bis(β-diketiminate) cyclophane.
View Article and Find Full Text PDF