Neurol Neuroimmunol Neuroinflamm
July 2024
Acute disseminated encephalomyelitis (ADEM) is one characteristic manifestation of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). A previously healthy man presented with retro-orbital headache and urinary retention 14 days after Tdap vaccination. Brain and spine MRI suggested a CNS demyelinating process.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2023
Aquaporin-4 (AQP4)-specific Th17 cells are thought to have a central role in neuromyelitis optica (NMO) pathogenesis. When modeling NMO, only AQP4-reactive Th17 cells from AQP4-deficient (AQP4), but not wild-type (WT) mice, caused CNS autoimmunity in recipient WT mice, indicating that a tightly regulated mechanism normally ensures tolerance to AQP4. Here, we found that pathogenic AQP4 T cell epitopes bind MHC II with exceptionally high affinity.
View Article and Find Full Text PDFBackground: Adequate response to the SARS-CoV-2 vaccine represents an important treatment goal in caring for patients with multiple sclerosis (MS) during the ongoing COVID-19 pandemic. Previous data so far have demonstrated lower spike-specific IgG responses following two SARS-CoV-2 vaccinations in MS patients treated with sphingosine-1-phosphate (S1P) receptor modulators and anti-CD20 monoclonal antibodies (mAb) compared to other disease modifying therapies (DMTs). It is unknown whether subsequent vaccinations can augment antibody responses in these patients.
View Article and Find Full Text PDFUnlabelled: Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity.
View Article and Find Full Text PDFVaccine-elicited adaptive immunity is an essential prerequisite for effective prevention and control of coronavirus 19 (COVID-19). Treatment of multiple sclerosis (MS) involves a diverse array of disease-modifying therapies (DMTs) that target antibody and cell-mediated immunity, yet a comprehensive understanding of how MS DMTs impact SARS-CoV-2 vaccine responses is lacking. We completed a detailed analysis of SARS-CoV-2 vaccine-elicited spike antigen-specific IgG and T cell responses in a cohort of healthy controls and MS participants in six different treatment categories.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
September 2020
Objective: To better understand ozanimod's mechanism of action (MOA), we conducted exploratory analyses from a phase 1 study to characterize ozanimod's effect on circulating leukocyte subsets in patients with relapsing multiple sclerosis.
Methods: An open-label pharmacodynamic study randomized patients to oral ozanimod hydrochloride (HCl) 0.5 (n = 13) or 1 mg/d (n = 11) for ∼12 weeks (including 7-day dose escalation).
Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis.
View Article and Find Full Text PDFWhile it is recognized that aquaporin-4 (AQP4)-specific T cells and antibodies participate in the pathogenesis of neuromyelitis optica (NMO), a human central nervous system (CNS) autoimmune demyelinating disease, creation of an AQP4-targeted model with both clinical and histologic manifestations of CNS autoimmunity has proven challenging. Immunization of wild-type (WT) mice with AQP4 peptides elicited T cell proliferation, although those T cells could not transfer disease to naïve recipient mice. Recently, two novel AQP4 T cell epitopes, peptide (p) 135-153 and p201-220, were identified when studying immune responses to AQP4 in AQP4-deficient (AQP4) mice, suggesting T cell reactivity to these epitopes is normally controlled by thymic negative selection.
View Article and Find Full Text PDFAquaporin-4 (AQP4)-specific T cells are expanded in neuromyelitis optica (NMO) patients and exhibit Th17 polarization. However, their pathogenic role in CNS autoimmune inflammatory disease is unclear. Although multiple AQP4 T-cell epitopes have been identified in WT C57BL/6 mice, we observed that neither immunization with those determinants nor transfer of donor T cells targeting them caused CNS autoimmune disease in recipient mice.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
October 2016
Objective: To evaluate the influence of oral laquinimod, a candidate multiple sclerosis (MS) treatment, on induction of T follicular helper cells, development of meningeal B cell aggregates, and clinical disease in a spontaneous B cell-dependent MS model.
Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by immunization with recombinant myelin oligodendrocyte glycoprotein (rMOG) protein. Spontaneous EAE was evaluated in C57BL/6 MOG p35-55-specific T cell receptor transgenic (2D2) × MOG-specific immunoglobulin (Ig)H-chain knock-in (IgH [Th]) mice.
Background: As little is known of association(s) between gut microbiota profiles and host immunological markers, we explored these in children with and without multiple sclerosis (MS).
Methods: Children ≤18 years provided stool and blood. MS cases were within 2-years of onset.
T cells from neuromyelitis optica (NMO) patients, which recognize the immunodominant epitope of aquaporin-4, exhibit Th17 polarization and cross-react with a homologous sequence of a Clostridium perfringens adenosine triphosphate-binding cassette transporter. Therefore, this commensal microbe might participate in NMO pathogenesis. We examined the gut microbiome by PhyloChip G3 from 16 NMO patients, 16 healthy controls (HC), and 16 multiple sclerosis patients.
View Article and Find Full Text PDFDimethyl fumarate (DMF) (BG-12, Tecfidera) is a fumaric acid ester (FAE) that was advanced as a multiple sclerosis (MS) therapy largely for potential neuroprotection as it was recognized that FAEs are capable of activating the antioxidative transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, DMF treatment in randomized controlled MS trials was associated with marked reductions in relapse rate and development of active brain MRI lesions, measures considered to reflect CNS inflammation. Here, we investigated the antiinflammatory contribution of Nrf2 in DMF treatment of the MS model, experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
April 2016
Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease.
Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4(f/f)) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35-55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry.
Neurol Neuroimmunol Neuroinflamm
December 2015
Objective: Glatiramer acetate (GA; Copaxone), a disease-modifying therapy for multiple sclerosis (MS), promotes development of anti-inflammatory (M2, type II) monocytes that can direct differentiation of regulatory T cells. We investigated the innate immune signaling pathways that participate in GA-mediated M2 monocyte polarization.
Methods: Monocytes were isolated from myeloid differentiation primary response gene 88 (MyD88)-deficient, Toll-IL-1 receptor domain-containing adaptor inducing interferon (IFN)-β (TRIF)-deficient, IFN-α/β receptor subunit 1 (IFNAR1)-deficient, and wild-type (WT) mice and human peripheral blood.
Neurol Neuroimmunol Neuroinflamm
June 2015
Objective: To evaluate the influence of dimethyl fumarate (DMF, Tecfidera) treatment of multiple sclerosis (MS) on leukocyte and lymphocyte subsets.
Methods: Peripheral blood leukocyte and lymphocyte subsets, including CD3(+), CD4(+), and CD8(+) T cells; CD19(+) B cells; and CD56(+) natural killer (NK) cells, were obtained at baseline and monitored at 3 months, 6 months, and 12 months after initiation of DMF treatment.
Results: Total leukocyte and lymphocyte counts diminished after 6 months of DMF therapy.
Neurol Neuroimmunol Neuroinflamm
August 2014
Objective: Recently, we reported that the 218 amino acid murine full-length myelin oligodendrocyte glycoprotein (MOG) contains novel T-cell epitopes p119-132, p181-195, and p186-200, located within its transmembrane and cytoplasmic domains, and that p119-132 is its immunodominant encephalitogenic T-cell epitope in mice. Here, we investigated whether the corresponding human MOG sequences contain T-cell epitopes in patients with multiple sclerosis (MS) and healthy controls (HC).
Methods: Peripheral blood T cells from patients with MS and HC were examined for proliferation to MOG p119-130, p181-195, p186-200, and p35-55 by fluorescence-activated cell sorting analysis using carboxylfluorescein diacetate succinimidyl ester dilution assay.
Several innovative disease-modifying treatments (DMTs) for relapsing-remitting multiple sclerosis have been licensed recently or are in late-stage development. The molecular targets of several of these DMTs are well defined. All affect at least 1 of 4 properties, namely (1) trafficking, (2) survival, (3) function, or (4) proliferation.
View Article and Find Full Text PDFObjective: Aquaporin 4 (AQP4)-specific autoantibodies in neuromyelitis optica (NMO) are immunoglobulin (Ig)G1, a T cell-dependent Ig subclass, indicating that AQP4-specific T cells participate in NMO pathogenesis. Our goal was to identify and characterize AQP4-specific T cells in NMO patients and healthy controls (HC).
Methods: Peripheral blood T cells from NMO patients and HC were examined for recognition of AQP4 and production of proinflammatory cytokines.