Background: Individuals with autism spectrum disorders (ASD) often exhibit altered sensory processing and deficits in language development. Prenatal exposure to valproic acid (VPA) increases the risk for ASD and impairs both receptive and expressive language. Like individuals with ASD, rodents prenatally exposed to VPA exhibit degraded auditory cortical processing and abnormal neural activity to sounds.
View Article and Find Full Text PDFBackground: Individuals with autism spectrum disorders (ASD) often exhibit altered sensory processing and deficits in language development. Prenatal exposure to valproic acid (VPA) increases the risk for ASD and impairs both receptive and expressive language. Like individuals with ASD, rodents prenatally exposed to VPA exhibit degraded auditory cortical processing and abnormal neural activity to sounds.
View Article and Find Full Text PDFPeripheral nerve stimulation is an effective treatment for various neurological disorders. The method of activation and stimulation parameters used impact the efficacy of the therapy, which emphasizes the need for tools to model this behavior. Computational modeling of nerve stimulation has proven to be a useful tool for estimating stimulation thresholds, optimizing electrode design, and exploring previously untested stimulation methods.
View Article and Find Full Text PDFBackground: Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome.
View Article and Find Full Text PDFRepeatedly pairing a brief train of vagus nerve stimulation (VNS) with an auditory stimulus drives reorganization of primary auditory cortex (A1), and the magnitude of this VNS-dependent plasticity is dependent on the stimulation parameters, including intensity and pulse rate. However, there is currently little data to guide the selection of VNS train durations, an easily adjusted parameter that could influence the effect of VNS-based therapies. Here, we tested the effect of varying the duration of the VNS train on the extent of VNS-dependent cortical plasticity.
View Article and Find Full Text PDF