Ophthalmic Surg Lasers Imaging Retina
January 2023
Purpose: Oxidative stress-induced mitochondrial dysfunction is implicated in the pathogenesis of age-related macular degeneration (AMD). Oxidized mitochondrial flavoprotein fluorescence (FPF) may serve as a quantifiable biomarker of oxidative stress, reported as either mean score for the entire image (intensity) or variability (heterogeneity). This study examines FPF intensity and heterogeneity across a large patient cohort of various Beckman stages of AMD.
View Article and Find Full Text PDFBackground: Whether by indirect oxidative stress or direct genetic defect, various genetic retinal dystrophies involve mitochondrial stress. Mitochondrial flavoprotein fluorescence (FPF), reported as either average signal intensity or variability (heterogeneity), may serve as a direct, quantifiable marker of oxidative stress.
Materials And Methods: This observational study enrolled patients with genetically confirmed retinal dystrophies between January and December 2021.
Purpose: To investigate the presence of flavoprotein fluorescence (FPF) at the optic nerve head (ONH) rim as a marker of mitochondrial dysfunction in primary open-angle glaucoma (POAG) and control eyes.
Design: Retrospective cross-sectional study of patients recruited from the New York Eye and Ear Infirmary of Mount Sinai.
Participants: A total of 86 eyes (50 eyes of 30 patients with POAG and 36 eyes of 20 control participants) were enrolled.
Mitochondria are critical for cellular energy production and homeostasis. Oxidative stress and associated mitochondrial dysfunction are integral components of the pathophysiology of retinal diseases, including diabetic retinopathy (DR), age-related macular degeneration, and glaucoma. Within mitochondria, flavoproteins are oxidized and reduced and emit a green autofluorescence when oxidized following blue light excitation.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2012
As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process.
View Article and Find Full Text PDF