Genome-derived microRNAs (miRNAs or miRs) govern posttranscriptional gene regulation and play important roles in various cellular processes and disease progression. While chemo-engineered miRNA mimics or biosimilars made in vitro are widely available and used, miRNA agents produced in vivo are emerging to closely recapitulate natural miRNA species for research. Our recent work has demonstrated the success of high-yield, in vivo production of recombinant miRNAs by using human tRNA (htRNA) fused precursor miRNA (pre-miR) carriers.
View Article and Find Full Text PDFAltered metabolism, such as aerobic glycolysis or the Warburg effect, has been recognized as characteristics of tumor cells for almost a century. Since then, there is accumulating evidence to demonstrate the metabolic reprogramming of tumor cells, addiction to excessive uptake and metabolism of key nutrients, to support rapid proliferation and invasion under tumor microenvironment. The solute carrier (SLC) superfamily transporters are responsible for influx or efflux of a wide variety of xenobiotic and metabolites that are needed for the cells to function, as well as some medications.
View Article and Find Full Text PDFTherapeutic RNAs, such as antisense oligonucleotides (ASOs), aptamers, small-interfering RNAs (siRNAs), microRNAs (miRs or miRNAs), messenger RNAs (mRNAs), and guide RNAs (gRNAs), represent a novel class of modalities that not only increase the molecular diversity of medications but also expand the range of druggable targets. To develop noncoding RNA therapeutics for the treatment of cancer diseases, we have established a novel robust RNA bioengineering platform to achieve high-yield and large-scale production of true biologic RNA agents, which are proven to be functional in the control of target gene expression and effective in the management of tumor progression in various models. Herein, we describe the methods for bioengineered RNA (BioRNA or BERA) therapy in patient-derived organoids (PDOs) in vitro and patient-derived xenograft (PDX) mouse models in vivo.
View Article and Find Full Text PDF