Endothelial dysfunction is associated with diverse cardiovascular pathologies. Here, we show a previously unappreciated role for the Abelson (Abl) family kinases (Abl and Arg) in endothelial function and the regulation of angiogenic factor pathways important for vascular homeostasis. Endothelial Abl deletion in Arg-null mice led to late-stage embryonic and perinatal lethality, with mutant mice displaying focal loss of vasculature and tissue necrosis.
View Article and Find Full Text PDFDynamic signals linking the actin cytoskeleton and cell adhesion receptors are essential for morphogenesis during development and normal tissue homeostasis. Abi1 is a central regulator of actin polymerization through interactions with multiple protein complexes. However, the in vivo role of Abi1 remains to be defined.
View Article and Find Full Text PDFThe cytoskeletal regulators that mediate the change in the neuronal cytoskeletal machinery from one that promotes oriented motility to one that facilitates differentiation at the appropriate locations in the developing neocortex remain unknown. We found that Nck-associated protein 1 (Nap1), an adaptor protein thought to modulate actin nucleation, is selectively expressed in the developing cortical plate, where neurons terminate their migration and initiate laminar-specific differentiation. Loss of Nap1 function disrupts neuronal differentiation.
View Article and Find Full Text PDFBackground: The molecular reorganization of signaling molecules after T cell receptor (TCR) activation is accompanied by polymerization of actin at the site of contact between a T cell and an antigen-presenting cell (APC), as well as extension of actin-rich lamellipodia around the APC. Actin polymerization is critical for the fidelity and efficiency of the T cell response to antigen. The ability of T cells to polymerize actin is critical for several steps in T cell activation including TCR clustering, mature immunological synapse formation, calcium flux, IL-2 production, and proliferation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
June 2005
Purpose: The inner limiting membrane (ILM) and the vitreous body (VB) are major parts of the extracellular matrix of the eye. The present study was undertaken to investigate the synthesis and turnover of the ILM and VB in chick and human embryonic and postembryonic eye development.
Methods: The abundance of ILM and VB proteins was determined by Western blot analysis using samples from chick and human VB of different ages.
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed predominantly in radial glial fibers passing through the upper strata of the cortical plate (CP) where neurons end their migration.
View Article and Find Full Text PDFWe investigated the regulation of the activin/nodal-inducible distal element (DE) of the Xenopus goosecoid (gsc) promoter. On the basis of its interaction with the DE, we isolated a Xenopus homolog of the human Williams-Beuren syndrome critical region 11 (XWBSCR11), and further, show that it interacts with pathway-specific Smad2 and Smad3 in a ligand-dependent manner. Interestingly, we also find that XWBSCR11 functions cooperatively with FoxH1 (Fast-1) to stimulate DE-dependent transcription.
View Article and Find Full Text PDF