Background: As knowledge of the human genome has advanced, so too has the recognition that interpretation of the pathogenic nature of sequence variants can be challenging. The von Willebrand factor (VWF) gene exhibits a significant degree of sequence variability, and the first VWF variant associated with type 1 von Willebrand disease (VWD), c.4751 A>G, p.
View Article and Find Full Text PDFBackground: One-third of patients with severe hemophilia A develop neutralizing antibodies to the factor VIII (FVIII) protein in response to intravenous replacement therapy. Patients may also generate natural, nonneutralizing antibodies to FVIII before FVIII exposure. These patients are at increased risk of developing neutralizing antibodies to FVIII.
View Article and Find Full Text PDFBackground: Substantial phenotypic heterogeneity exists in endothelial cells and while much of this heterogeneity results from local microenvironments, epigenetic modifications also contribute.
Methods: Cultured human umbilical vein endothelial cells, human pulmonary microvascular endothelial cells, human hepatic sinusoidal endothelial cells, human lymphatic endothelial cells (hLECs), and two different isolations of endothelial colony forming cells (ECFCs) were assessed for levels of factor VIII (FVIII) and von Willebrand factor (VWF) RNA and protein. The intracellular location and co-localization of both proteins was evaluated with immunofluorescence microscopy and stimulated release toof FVIII and VWF from Weibel-Palade bodies (WPBs) was evaluated.
Background: Stabilin-2 is an endocytic scavenger receptor that mediates the clearance of glycosaminoglycans, phosphatidylserine-expressing cells, and the von Willebrand factor-factor VIII (FVIII) complex. In a genome-wide screening study, pathogenic loss-of-function variants in the human STAB2 gene associated with an increased incidence of unprovoked venous thromboembolism (VTE). However, the specific mechanism(s) by which stabilin-2 deficiency influences the pathogenesis of VTE is unknown.
View Article and Find Full Text PDFBackground: Scavenger receptors play a significant role in clearing aged proteins from the plasma, including the large glycoprotein coagulation factors von Willebrand factor (VWF) and factor VIII (FVIII). A large genome-wide association study meta-analysis has identified genetic variants in the gene SCARA5, which encodes the class A scavenger receptor SCARA5, as being associated with plasma levels of VWF and FVIII.
Objectives: The ability of SCARA5 to regulate the clearance of VWF-FVIII was characterized.
Essentials CLEC4M is an endocytic receptor for factor FVIII. CLEC4M interacts with FVIII in a VWF-dependent and independent manner. CLEC4M binds to mannose-containing glycans on FVIII.
View Article and Find Full Text PDFQuantitative abnormalities of the von Willebrand factor-factor VIII (VWF-FVIII) complex associate with inherited bleeding or thrombotic disorders. Receptor-mediated interactions between plasma VWF-FVIII and phagocytic or immune cells can influence their hemostatic and immunogenic activities. Genetic association studies have demonstrated that variants in the STAB2 gene, which encodes the scavenger receptor stabilin-2, associate with plasma levels of VWF-FVIII.
View Article and Find Full Text PDFEx vivo gene therapy strategies avoid systemic delivery of viruses thereby mitigating the risk of vector-associated immunogenicity. Previously, we delivered autologous factor VIII (FVIII)-expressing blood outgrowth endothelial cells (BOECs) to hemophilia A mice and showed that these cells remained sequestered within the implanted matrix and provided therapeutic levels of FVIII. Prior to translating this strategy into the canine (c) model of hemophilia A, we increased cFVIII transgene expression by at least 100-fold with the use of the elongation factor 1 alpha (EF1α) promoter and a strong endothelial enhancer element.
View Article and Find Full Text PDFGenetic variation in or near the C-type lectin domain family 4 member M (CLEC4M) has been associated with plasma levels of von Willebrand factor (VWF) in healthy individuals. CLEC4M is a lectin receptor with a polymorphic extracellular neck region possessing a variable number of tandem repeats (VNTR). A total of 491 participants (318 patients with type 1 von Willebrand disease [VWD] and 173 unaffected family members) were genotyped for the CLEC4M VNTR polymorphism.
View Article and Find Full Text PDFType 1 VWD is the mild to moderate reduction of VWF levels. This study examined the mechanisms underlying 2 common type 1 VWD mutations, the severe R1205H and more moderate Y1584C. In vitro biosynthesis was reduced for both mutations in human and mouse VWF, with the effect being more severe in R1205H.
View Article and Find Full Text PDFLess than 50 patients are reported with platelet type von Willebrand disease (PT-VWD) worldwide. Several reports have discussed the diagnostic challenge of this disease versus the closely similar disorder type 2B VWD. However, no systematic study has evaluated this dilemma globally.
View Article and Find Full Text PDFWe have studied the effect of a 13-bp deletion in the promoter of the von Willebrand factor (VWF) gene in a patient with type 1 von Willebrand disease. The index case has a VWF:Ag of 0.49 IU/mL and is heterozygous for the deletion.
View Article and Find Full Text PDFThe multimeric plasma protein von Willebrand factor (VWF) is regulated in size by its protease, ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13). Y1605-M1606 cleavage site mutations and single nucleotide polymorphisms (SNPs) in the VWF A1 and A2 domains were examined for alteration in ADAMTS13-mediated cleavage of VWF. Recombinant human full-length VWF (rVWF) was digested with recombinant human ADAMTS13 (rADAMTS13) using a dialysis membrane method with 1.
View Article and Find Full Text PDFIn order to evaluate the changes within the VWF gene that might contribute to the pathogenesis of type 1 von Willebrand disease (VWD), a large multicenter Canadian study was undertaken. We present data from the sequence analysis of the VWF gene in 123 type 1 VWD index cases and their families. We have identified putative mutations within the VWF gene in 63% (n = 78) of index cases, leaving 37% (n = 45) with no identified changes.
View Article and Find Full Text PDFInteraction between the platelet glycoprotein Ibalpha (GPIbalpha) receptor and its adhesive ligand von Willebrand factor (VWF) has a critical role in the process of hemostasis. Platelet-type von Willebrand disease (PT-VWD) is a rare bleeding disorder that results from gain-of-function mutations in the GPIBA gene. We studied this gene from 5 members of a previously unreported family with a PT-VWD phenotype.
View Article and Find Full Text PDFMechanisms of tissue-restricted patterns of von Willebrand factor (VWF) expression involve activators and repressors that limit expression to endothelial cells and megakaryocytes. The relative transcriptional activity of the proximal VWF promoter was assessed in VWF-producing and -nonproducing cells, and promoter activity was highest in endothelial cells followed by megakaryocytes. Only basal VWF promoter activity was seen in nonendothelial cells.
View Article and Find Full Text PDFIn this manuscript, we describe a case of type 2A von Willebrand disease (VWD) caused by the novel heterozygous G>A transition at nucleotide 3538, which should result in the putative, nonconservative substitution of G1180R. This mutation was reproduced by site-directed mutagenesis; however, the recombinant mutant protein was efficiently secreted from cells and assembled correctly into multimers. Because the substitution is located at the last nucleotide of exon 26, the patient's platelet von Willebrand factor (VWF) mRNA was analyzed and 3 transcripts were observed: the normal transcript without the 3538G>A transition, a transcript with the in-frame deletion of exon 26, and a transcript with the in-frame deletions of exons 23 and 26.
View Article and Find Full Text PDFTo date, no dominant mutation has been identified in a significant proportion of patients with type 1 von Willebrand disease (VWD). In this study, we examined 70 families as part of the Canadian Type 1 VWD Study. The entire VWF gene was sequenced for 1 index case, revealing 2 sequence variations: intron 30 (5312-19A>C) and exon 28 at Tyr1584Cys (4751A>G).
View Article and Find Full Text PDFIf gene therapy is to be an effective treatment modality for hemophilia A, therapeutic levels and tissue-restricted expression of factor VIII (FVIII) must be achieved through optimization of transgene expression. To this end, we incorporated three types of sequence elements into a canine B domain-deleted FVIII transgene cassette and individually evaluated their effect on FVIII transgene expression. Functional FVIII activity was initially assessed in vitro and hydrodynamic injection of the different transgene constructs into mice was subsequently used as a model to compare in vivo expression of the various modified transgenes.
View Article and Find Full Text PDFWe have identified the causative mutation in the hemophilia A dog colony at Queen's University, Canada and have observed a striking similarity with the intron 22 inversion found in approximately 45% of severely affected hemophilia A patients. The canine hemophilia A phenotype arises from aberrant splicing and premature termination of transcription of the FVIII gene, resulting in a polyadenylated transcript lacking exons distal to 22 and terminating with a novel sequence element (NSE). In dogs and other species including humans, this NSE is present in low copy number.
View Article and Find Full Text PDF