Natural rubber produced in stems of the guayule plant (Parthenium argentatum) is susceptible to post-harvest degradation from microbial or thermo-oxidative processes, especially once stems are chipped. As a result, the time from harvest to extraction must be minimized to recover high quality rubber, especially in warm summer months. Tocopherols are natural antioxidants produced in plants through the shikimate and methyl-erythtiol-4-phosphate (MEP) pathways.
View Article and Find Full Text PDFPlant-soil feedback (PSF) processes impact plant productivity and ecosystem function, but they are poorly understood because PSFs vary significantly with plant and soil type, plant growth stage, and environmental conditions. Controlled greenhouse studies are essential to unravel the mechanisms associating PSFs with plant productivity; however, successful implementation of these controlled experiments is constrained by our understanding of the persistence of the soil microbiome during the transition from field to greenhouse. This study evaluates the preservation potential of a field soil microbiome when stored in the laboratory under field temperature and moisture levels.
View Article and Find Full Text PDFThe discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs.
View Article and Find Full Text PDFProduction of natural rubber by (guayule) requires increased yield for economic sustainability. An RNAi gene silencing strategy was used to engineer isoprenoid biosynthesis by downregulation of squalene synthase (SQS), such that the pool of farnesyl diphosphate (FPP) substrate might instead be available to initiate natural rubber synthesis. Downregulation of SQS resulted in significantly reduced squalene and slightly increased rubber, but not in the same tissues nor to the same extent, partially due to an apparent negative feedback regulatory mechanism that downregulated mevalonate pathway isoprenoid production, presumably associated with excess geranyl pyrophosphate levels.
View Article and Find Full Text PDFThe drought-adapted shrub guayule (Parthenium argentatum) produces rubber, a natural product of major commercial importance, and two co-products with potential industrial use: terpene resin and the carbohydrate fructan. The rubber content of guayule plants subjected to water stress is higher compared to that of well-irrigated plants, a fact consistently reported in guayule field evaluations. To better understand how drought influences rubber biosynthesis at the molecular level, a comprehensive transcriptome database was built from drought-stressed guayule stem tissues using de novo RNA-seq and genome-guided assembly, followed by annotation and expression analysis.
View Article and Find Full Text PDFBackground: Guayule (Parthenium argentatum Gray) is a drought tolerant, rubber producing perennial shrub native to northern Mexico and the US Southwest. Hevea brasiliensis, currently the world's only source of natural rubber, is grown as a monoculture, leaving it vulnerable to both biotic and abiotic stressors. Isolation of rubber from guayule occurs by mechanical harvesting of the entire plant.
View Article and Find Full Text PDFWe report functional genomics studies of a CYP74 rubber particle protein from , commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with gene expression down-regulated by RNAi () exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield.
View Article and Find Full Text PDFBackground: Guayule (Parthenium argentatum A. Gray) is a rubber-producing desert shrub native to Mexico and the United States. Guayule represents an alternative to Hevea brasiliensis as a source for commercial natural rubber.
View Article and Find Full Text PDFSeveral proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis.
View Article and Find Full Text PDFNatural rubber biosynthesis in guayule (Parthenium argentatum Gray) is associated with moderately cold night temperatures. To begin to dissect the molecular events triggered by cold temperatures that govern rubber synthesis induction in guayule, the transcriptome of bark tissue, where rubber is produced, was investigated. A total of 11,748 quality expressed sequence tags (ESTs) were obtained.
View Article and Find Full Text PDFMetabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome.
View Article and Find Full Text PDFBackground: Parthenium argentatum (guayule) is an industrial crop that produces latex, which was recently commercialized as a source of latex rubber safe for people with Type I latex allergy. The complete plastid genome of P. argentatum was sequenced.
View Article and Find Full Text PDFNatural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase. While the specific structure of this enzyme is not yet defined, based on activity it is probably a cis-prenyl transferase. Photoactive functionalized substrate analogues have been successfully used to identify isoprenoid-utilizing enzymes such as cis- and trans-prenyltransferases, and initiator binding of an allylic pyrophosphate molecule in rubber transferase has similar features to these systems.
View Article and Find Full Text PDFA number of biochemical processes rely on isoprenoids, including the post-translational modification of signaling proteins and the biosynthesis of a wide array of compounds. Photoactivatable analogues have been developed to study isoprenoid utilizing enzymes such as the isoprenoid synthases and prenyltransferases. While these initial analogues proved to be excellent structural analogues with good cross-linking capability, they lack the stability needed when the goals include isolation of cross-linked species, tryptic digestion, and subsequent peptide sequencing.
View Article and Find Full Text PDFNatural rubber is produced by a rubber transferase (a cis-prenyltransferase). Rubber transferase uses allylic pyrophosphate to initiate the rubber molecule and isopentenyl pyrophosphate (IPP) to form the polymer. Rubber biosynthesis also requires a divalent metal cation.
View Article and Find Full Text PDF