Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale.
View Article and Find Full Text PDFβ-particle emitting radionuclides, such as H, C, P, P, and S, are important molecular labels due to their small size and the prevalence of these atoms in biomolecules but are challenging to selectively detect and quantify within aqueous biological samples and systems. Here, we present a core-shell nanoparticle-based scintillation proximity assay platform (nanoSPA) for the separation-free, selective detection of radiolabeled analytes. nanoSPA is prepared by incorporating scintillant fluorophores into polystyrene core particles and encapsulating the scintillant-doped cores within functionalized silica shells.
View Article and Find Full Text PDFPhospholipid nanoshells, for example, liposomes, provide a versatile enabling platform for the development of nanometer-sized biosensors and molecular delivery systems. Utilization of phospholipid nanoshells is limited by the inherent instability in complex biological environments, where the phospholipid nanoshell may disassemble and degrade, thus releasing the contents and destroying sensor function. Polymer scaffold stabilization (PSS), wherein the phospholipid nanoshells are prepared by partitioning reactive monomers into the lipid bilayer lamella followed by radical polymerization, has emerged to increase phospholipid nanoshell stability.
View Article and Find Full Text PDFThe inwardly rectifying K (Kir) channel, Kir6.2, plays critical roles in physiological processes in the brain, heart, and pancreas. Although Kir6.
View Article and Find Full Text PDFβ-particle emitting radionuclides are useful molecular labels due to their abundance in biomolecules. Detection of β-emission from H, S, and P, important biological isotopes, is challenging due to the low energies (E ≤ 300 keV) and short penetration depths (≤0.6 mm) in aqueous media.
View Article and Find Full Text PDFNanomaterials have rapidly moved into the mainstream for chemical and biological analysis. Nanoparticle probes enhance signal intensity, increase the chemical and physical stability of the probe, and facilitate surface modification for specific targeting. Unfortunately, common problems are encountered with many nanoparticle probes, e.
View Article and Find Full Text PDFIn this letter, we report a facile method to prepare robust phospholipid vesicles using commonly available phospholipids that are stabilized via the formation of an interpenetrating, acid-labile, cross-linked polymer network that imparts a site for controlled polymer destabilization and subsequent vesicle degradation. The polymer network was formed in the inner lamella of the phospholipid bilayer using 2,2-di(methacryloyloxy-1-ethoxy)propane (DMOEP) and butyl methacrylate (BMA). Upon exposure to acidic conditions, the highly cross-linked polymer network was partially converted to smaller linear polymers, resulting in substantially reduced vesicle stability upon exposure to chemical and physical insults.
View Article and Find Full Text PDF