Absorption of light by the visual pigment rhodopsin triggers a rapid cis-trans photoisomerization of its retinal chromophore and a series of conformational changes in both the retinal and protein. The largest structural change is an outward tilt of transmembrane helix H6 that increases the separation of the intracellular ends of H6 and H3 and opens up the G-protein binding site. In the dark state of rhodopsin, Glu247 at the intracellular end of H6 forms a salt bridge with Arg135 on H3 to tether H6 in an inactive conformation.
View Article and Find Full Text PDFIn this study, a GlcNAc-6-O-Sulfotransferase, NodST and its complexation with the substrate 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the inhibitor 3'-phosphoadenosine 5'-phosphate (PAP) were studied using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. In addition, using isotopically labeled substrate, we have successfully confirmed a sulfated enzyme intermediate, which was predicted by the MS kinetic measurement. It is also shown that information regarding solution binding affinities can be obtained using electrospray ionization (ESI)-FTICR mass spectrometry.
View Article and Find Full Text PDF