Publications by authors named "Colleen Flanagan Pritz"

The global prevalence of mercury (Hg) contamination and its complex biogeochemical cycling has resulted in elevated Hg concentrations in biota in remote and pristine environments. However, there is uncertainty in the relative importance of Hg deposition and landscape factors that control Hg cycling and bioaccumulation. To address this, we measured total mercury (THg) concentrations in 1344 fish across 60 subalpine lakes from 12 national parks (NPs).

View Article and Find Full Text PDF

We paired mercury (Hg) concentrations in dragonfly larvae with water chemistry in 29 U.S. national parks to highlight how ecological and biogeochemical context (habitat, dissolved organic carbon [DOC]) influence drivers of Hg bioaccumulation.

View Article and Find Full Text PDF

Mercury (Hg) exposure to fish, wildlife, and humans is widespread and of global concern, thus stimulating efforts to reduce emissions. Because the relationships between rates of inorganic Hg loading, methylmercury (MeHg) production, and bioaccumulation are extremely complex and challenging to predict, there is a need for reliable biosentinels to understand the distribution of Hg in the environment and monitor the effectiveness of reduction efforts. However, it is important to assess how temporal and spatial variation at multiple scales influences the efficacy of specific biosentinels.

View Article and Find Full Text PDF

The COVID-19 pandemic has disrupted the timing and substance of conservation research, management, and public engagement in protected areas around the world. This disruption is evident in US national parks, which play a key role in protecting natural and cultural resources and providing outdoor experiences for the public. Collectively, US national parks protect 34 million ha, host more than 300 million visits annually, and serve as one of the world's largest informal education organizations.

View Article and Find Full Text PDF

We conducted a national-scale assessment of mercury (Hg) bioaccumulation in aquatic ecosystems, using dragonfly larvae as biosentinels, by developing a citizen-science network to facilitate biological sampling. Implementing a carefully designed sampling methodology for citizen scientists, we developed an effective framework for a landscape-level inquiry that might otherwise be resource limited. We assessed the variation in dragonfly Hg concentrations across >450 sites spanning 100 United States National Park Service units and examined intrinsic and extrinsic factors associated with the variation in Hg concentrations.

View Article and Find Full Text PDF

Fish represent high quality protein and nutrient sources, but Hg contamination is ubiquitous in aquatic ecosystems and can pose health risks to fish and their consumers. Potential health risks posed to fish and humans by Hg contamination in fish were assessed in western Canada and the United States. A large compilation of inland fish Hg concentrations was evaluated in terms of potential health risk to the fish themselves, health risk to predatory fish that consume Hg contaminated fish, and to humans that consume Hg contaminated fish.

View Article and Find Full Text PDF

Methylmercury contamination of fish is a global threat to environmental health. Mercury (Hg) monitoring programs are valuable for generating data that can be compiled for spatially broad syntheses to identify emergent ecosystem properties that influence fish Hg bioaccumulation. Fish total Hg (THg) concentrations were evaluated across the Western United States (US) and Canada, a region defined by extreme gradients in habitat structure and water management.

View Article and Find Full Text PDF