Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g.
View Article and Find Full Text PDFIncreasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer's disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction.
View Article and Find Full Text PDFMeeting Report on the 9th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS) held on May 8-11, 2019, in Vail, CO.
View Article and Find Full Text PDFThere are numerous examples of parasites that manipulate the behavior of the hosts that they infect. One such host-pathogen relationship occurs between the 'zombie-ant fungus' and its carpenter ant host. Infected ants climb to elevated locations and bite onto vegetation where they remain permanently affixed well after death.
View Article and Find Full Text PDFPurines are metabolic building blocks essential for all living organisms on earth. De novo purine biosynthesis occurs in the brain and appears to play important roles in neural development. Phosphoribosyl formylglycinamidine synthase (FGAMS, also known as PFAS or FGARAT), a core enzyme involved in the de novo synthesis of purines, may play alternative roles in viral pathogenesis.
View Article and Find Full Text PDFSome microbes possess the ability to adaptively manipulate host behavior. To better understand how such microbial parasites control animal behavior, we examine the cell-level interactions between the species-specific fungal parasite and its carpenter ant host () at a crucial moment in the parasite's lifecycle: when the manipulated host fixes itself permanently to a substrate by its mandibles. The fungus is known to secrete tissue-specific metabolites and cause changes in host gene expression as well as atrophy in the mandible muscles of its ant host, but it is unknown how the fungus coordinates these effects to manipulate its host's behavior.
View Article and Find Full Text PDFPurpose: Sex and age are critical factors in a variety of retinal diseases but have garnered little attention in preclinical models. The current lack of knowledge impairs informed decision making regarding inclusion and design of studies that incorporate both sexes and/or the effects of aging. The goal of this study was to examine normative mouse retina gene expression in both sexes and with advancing age.
View Article and Find Full Text PDFNeuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses.
View Article and Find Full Text PDFDNA methylation is a central regulator of genome function, and altered methylation patterns are indicative of biological aging and mortality. Age-related cellular, biochemical, and molecular changes in the hippocampus lead to cognitive impairments and greater vulnerability to neurodegenerative disease that varies between the sexes. The role of hippocampal epigenomic changes with aging in these processes is unknown as no genome-wide analyses of age-related methylation changes have considered the factor of sex in a controlled animal model.
View Article and Find Full Text PDFBackground: The necessity of including both males and females in molecular neuroscience research is now well understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite the differences in age-related neurological dysfunction and disease between males and females.
Methods: Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and female C57BL6 mice hippocampus was analyzed.
Background: Changes to the epigenome with aging, and DNA modifications in particular, have been proposed as a central regulator of the aging process, a predictor of mortality, and a contributor to the pathogenesis of age-related diseases. In the central nervous system, control of learning and memory, neurogenesis, and plasticity require changes in cytosine methylation and hydroxymethylation. Although genome-wide decreases in methylation with aging are often reported as scientific dogma, primary research reports describe decreases, increases, or lack of change in methylation and hydroxymethylation and their principle regulators, DNA methyltransferases and ten-eleven translocation dioxygenases in the hippocampus.
View Article and Find Full Text PDFHaving appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
January 2017
The major histocompatibility complex I (MHCI) pathway, which canonically functions in innate immune viral antigen presentation and detection, is functionally pleiotropic in the central nervous system (CNS). Alternative roles include developmental synapse pruning, regulation of synaptic plasticity, and inhibition of neuronal insulin signaling; all processes altered during brain aging. Upregulation of MHCI components with aging has been reported; however, no systematic examination of MHCI cellular localization, expression, and regulation across CNS regions, life span, and sexes has been reported.
View Article and Find Full Text PDF