Publications by authors named "Collado-Vides J"

Cryptic prophages (CPs) are elements of bacterial genomes acquired from bacteriophage that infect the host cell and ultimately become stably integrated within the host genome. While some proteins encoded by CPs can modulate host phenotypes, the potential for Transcription Factors (TFs) encoded by CPs to impact host physiology by regulating host genes has not been thoroughly investigated. In this work, we report hundreds of host genes regulated by DicC, a DNA-binding TF encoded in the Qin prophage of .

View Article and Find Full Text PDF

The DNA binding of most Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of DNA binding for 139 TFs using ChIP-Seq. We used these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence.

View Article and Find Full Text PDF

Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. Here, we present for the first time a detailed analysis of the sources of knowledge supporting the collection of transcriptional regulatory interactions (RIs) of K-12. An RI groups the transcription factor, its effect (positive or negative) and the regulated target, a promoter, a gene or transcription unit.

View Article and Find Full Text PDF

RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements.

View Article and Find Full Text PDF

EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of .

View Article and Find Full Text PDF

Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. As new methodologies emerge, a natural step is to compare their results with those from established methodologies, such as the classic methods of molecular biology used to characterize transcription factor binding sites, promoters, or transcription units. In the case of K-12, the best-studied microorganism, for the last 30 years we have continuously gathered such knowledge from original scientific publications, and have organized it in two databases, RegulonDB and EcoCyc.

View Article and Find Full Text PDF

Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward.

View Article and Find Full Text PDF

Knowledge of biological organisms at the molecular level that has been gathered is now organized into databases, often within ontological frameworks. To enable computational comparisons of annotations across different genomes and organisms, controlled vocabularies have been essential, as is the case in the functional annotation classifications used for bacteria, such as MultiFun and the more widely used Gene Ontology. The function of individual gene products as well as the processes in which collections of them participate constitute a wealth of classes that describe the biological role of gene products in a large number of organisms in the three kingdoms of life.

View Article and Find Full Text PDF

In free-living bacteria, the ability to regulate gene expression is at the core of adapting and interacting with the environment. For these systems to have a logic, a signal must trigger a genetic change that helps the cell to deal with what implies its presence in the environment; briefly, the response is expected to include a feedback to the signal. Thus, it makes sense to think of genetic sensory mechanisms of gene regulation.

View Article and Find Full Text PDF

The number of published papers in biomedical research makes it rather impossible for a researcher to keep up to date. This is where manually curated databases contribute facilitating the access to knowledge. However, the structure required by databases strongly limits the type of valuable information that can be incorporated.

View Article and Find Full Text PDF

The EcoCyc model-organism database collects and summarizes experimental data for K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality.

View Article and Find Full Text PDF

Transcription factors (TFs) play a main role in transcriptional regulation of bacteria, as they regulate transcription of the genetic information encoded in DNA. Thus, the curation of the properties of these regulatory proteins is essential for a better understanding of transcriptional regulation. However, traditional manual curation of article collections to compile descriptions of TF properties takes significant time and effort due to the overwhelming amount of biomedical literature, which increases every day.

View Article and Find Full Text PDF

Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF) have contrasting clinical and pathological characteristics and interesting whole-genome transcriptomic profiles. However, data from public repositories are difficult to reprocess and reanalyze. Here, we present PulmonDB, a web-based database (http://pulmondb.

View Article and Find Full Text PDF

Transcription factors (TFs) are important drivers of cellular decision-making. When bacteria encounter a change in the environment, TFs alter the expression of a defined set of genes in order to adequately respond. It is commonly assumed that genes regulated by the same TF are involved in the same biological process.

View Article and Find Full Text PDF

Background: The ability to express the same meaning in different ways is a well-known property of natural language. This amazing property is the source of major difficulties in natural language processing. Given the constant increase in published literature, its curation and information extraction would strongly benefit from efficient automatic processes, for which corpora of sentences evaluated by experts are a valuable resource.

View Article and Find Full Text PDF

Background: Crl, identified for curli production, is a small transcription factor that stimulates the association of the σ factor (RpoS) with the RNA polymerase core through direct and specific interactions, increasing the transcription rate of genes during the transition from exponential to stationary phase at low temperatures, using indole as an effector molecule. The lack of a comprehensive collection of information on the Crl regulon makes it difficult to identify a dominant function of Crl and to generate any hypotheses concerning its taxonomical distribution in archaeal and bacterial organisms.

Results: In this work, based on a systematic literature review, we identified the first comprehensive dataset of 86 genes under the control of Crl in the bacterium Escherichia coli K-12; those genes correspond to 40% of the σ regulon in this bacterium.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) is becoming a routine approach in most domains of the life sciences. To ensure reproducibility of results, there is a crucial need to improve the automation of NGS data processing and enable forthcoming studies relying on big datasets. Although user-friendly interfaces now exist, there remains a strong need for accessible solutions that allow experimental biologists to analyze and explore their results in an autonomous and flexible way.

View Article and Find Full Text PDF

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of .

View Article and Find Full Text PDF

RegulonDB, first published 20 years ago, is a comprehensive electronic resource about regulation of transcription initiation of Escherichia coli K-12 with decades of knowledge from classic molecular biology experiments, and recently also from high-throughput genomic methodologies. We curated the literature to keep RegulonDB up to date, and initiated curation of ChIP and gSELEX experiments. We estimate that current knowledge describes between 10% and 30% of the expected total number of transcription factor- gene regulatory interactions in E.

View Article and Find Full Text PDF

Motivation: A major component in increasing our understanding of the biology of an organism is the mapping of its genotypic potential into its phenotypic expression profiles. This mapping is executed by the machinery of gene regulation, which is essentially studied by changes in growth conditions. Although many efforts have been made to systematize the annotation of experimental conditions in microbiology, the available annotations are not based on a consistent and controlled vocabulary, making difficult the identification of biologically meaningful comparisons of knowledge derived from different experiments or laboratories.

View Article and Find Full Text PDF

Background: Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data.

Results: In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E.

View Article and Find Full Text PDF

In RegulonDB, for over 25 years, we have been gathering knowledge by manual curation from original scientific literature on the regulation of transcription initiation and genome organization in transcription units of the Escherichia coli K-12 genome. This unit describes six basic protocols that can serve as a guiding introduction to the main content of the current version (v9.4) of this electronic resource.

View Article and Find Full Text PDF