In 2014, Physostegia chlorotic mottle virus (PhCMoV) was discovered in Austria in . Subsequent collaborative efforts established a link between the virus and severe fruit symptoms on important crops such as tomato, eggplant, and cucumber across nine European countries. Thereafter, specific knowledge gaps, which are crucial to assess the risks PhCMoV can pose for production and how to manage it, needed to be addressed.
View Article and Find Full Text PDFIn 2020, symptoms of putative viral origin were observed on 7% of tomatoes in an organic vegetable farm in Belgium (deformed uneven ripened fruits, vein clearing, mosaic and purple leaves, stunted plants). The leaves of twenty symptomatic plants were collected, pooled and screened for viruses using high throughput sequencing technologies (HTS) on Illumina NextSeq500 following a virion-associated nucleic acid (VANA) protocol (Temple et al., 2021, Be_SL1).
View Article and Find Full Text PDFMixing crop cultivars has long been considered as a way to control epidemics at the field level and is experiencing a revival of interest in agriculture. Yet, the ability of mixing to control pests is highly variable and often unpredictable in the field. Beyond classical diversity effects such as dispersal barrier generated by genotypic diversity, several understudied processes are involved.
View Article and Find Full Text PDFThe advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels.
View Article and Find Full Text PDFLettuce ring necrosis virus (LRNV), genus Ophiovirus, was detected by the Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP) in June and November of 2021 in two samples of chili pepper fruits (Capsicum spp.), both in mixed infection with other viruses. The first sample originated from a production site in Belgium (Sample ID: 40009704) and the second from a production site in the Netherlands (Sample ID: 41115269).
View Article and Find Full Text PDFOver the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world.
View Article and Find Full Text PDFApplication of high throughput sequencing (HTS) technologies enabled the first identification of Physostegia chlorotic mottle virus (PhCMoV) in 2018 in Austria. Subsequently, PhCMoV was detected in Germany and Serbia on tomatoes showing severe fruit mottling and ripening anomalies. We report here how prepublication data-sharing resulted in an international collaboration across eight laboratories in five countries, enabling an in-depth characterization of PhCMoV.
View Article and Find Full Text PDFAs part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant-plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation.
View Article and Find Full Text PDF