Microalgae are a promising feedstock for the production of triacylglycerol (TAG) for a variety of potential applications, ranging from food and human health to biofuels and green chemistry. However, obtaining high TAG yields is challenging. A phenotypic assay for the accumulation of oil droplets was developed to screen a library of 1,200 drugs, annotated with pharmacology information, to select compounds that trigger TAG accumulation in the diatom Using this screen, we identified 34 molecules acting in a dose-dependent manner.
View Article and Find Full Text PDFFolates (B9 vitamins) are essential cofactors in one-carbon metabolism. Since C1 transfer reactions are involved in synthesis of nucleic acids, proteins, lipids, and other biomolecules, as well as in epigenetic control, folates are vital for all living organisms. This work presents a complete study of a plant (dihydrofolate reductase-thymidylate synthase) gene family that implements the penultimate step in folate biosynthesis.
View Article and Find Full Text PDFTriacylglycerol (TAG) accumulation often occurs in growth limiting conditions such as nutrient deprivations. We analyzed and compared the lipid contents of cells grown under two conditions that inhibited growth as a way to study interactions between membrane and storage lipids. In order to inhibit C1 metabolism, the first condition utilized methotrexate (MTX), a drug that inhibits methyl transfer reactions and potentially reduces Pi-choline synthesis, the polar head of phosphatidylcholine (PC).
View Article and Find Full Text PDFIn higher plants, fatty acids (FAs) with 18 carbons (18C) represent about 70% of total FAs, the most abundant species being 18:2 and 18:3. These two polyunsaturated FAs (PUFAs) represent about 55% of total FAs in Arabidopsis cell suspension cultures, whereas 18:1 represents about 10%. The level of PUFAs may vary, depending on ill-defined factors.
View Article and Find Full Text PDFDiatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment.
View Article and Find Full Text PDF