Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness.
View Article and Find Full Text PDFChanges in RNA are often poor predictors of protein accumulation. One factor disrupting this relationship are changes in transcription start sites (TSSs). Therefore, we explored how alterations in TSS affected expression of genes regulated by the Zap1 transcriptional activator of Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe polyamines putrescine, spermidine, and spermine are required for normal eukaryotic cellular functions. However, the minimum requirement for polyamines varies widely, ranging from very high concentrations (mm) in mammalian cells to extremely low in the yeast Yeast strains deficient in polyamine biosynthesis (Δ, lacking ornithine decarboxylase, and Δ, lacking SAM decarboxylase) require externally supplied polyamines, but supplementation with as little as 10 m spermidine restores their growth. Here, we report that culturing a Δ mutant or a Δ mutant in a standard polyamine-free minimal medium (SDC) leads to marked increases in cellular Mg content.
View Article and Find Full Text PDFZinc is an essential cofactor for many proteins. A key mechanism of zinc homeostasis during deficiency is "zinc sparing" in which specific zinc-binding proteins are repressed to reduce the cellular requirement. In this report, we evaluated zinc sparing across the zinc proteome of Saccharomyces cerevisiae.
View Article and Find Full Text PDFZinc homeostasis is essential for all organisms. The Zap1 transcriptional activator regulates these processes in the yeast . During zinc deficiency, Zap1 increases expression of zinc transporters and proteins involved in adapting to the stress of zinc deficiency.
View Article and Find Full Text PDFMaintaining zinc homeostasis is an important property of all organisms. In the yeast Saccharomyces cerevisiae, the Zap1 transcriptional activator is a central player in this process. In response to zinc deficiency, Zap1 activates transcription of many genes and consequently increases accumulation of their encoded proteins.
View Article and Find Full Text PDFStability of many proteins requires zinc. Zinc deficiency disrupts their folding, and the ubiquitin-proteasome system may help manage this stress. In Saccharomyces cerevisiae, UBI4 encodes five tandem ubiquitin monomers and is essential for growth in zinc-deficient conditions.
View Article and Find Full Text PDFAntimicrobial peptides represent an expanding family of peptides involved in innate immunity of many living organisms. They show an amazing diversity in their sequence, structure, and mechanism of action. Among them, plant defensins are renowned for their antifungal activity but various side activities have also been described.
View Article and Find Full Text PDFZinc is required for the folding and function of many proteins. In Saccharomyces cerevisiae, homeostatic and adaptive responses to zinc deficiency are regulated by the Zap1 transcription factor. One Zap1 target gene encodes the Tsa1 peroxiredoxin, a protein with both peroxidase and protein chaperone activities.
View Article and Find Full Text PDFMg homeostasis is critical to eukaryotic cells, but the contribution of Mg transporter activity to homeostasis is not fully understood. In yeast, Mg uptake is primarily mediated by the Alr1 transporter, which also allows low affinity uptake of other divalent cations such as Ni(2+), Mn(2+), Zn(2+) and Co(2+). Using Ni(2+) uptake to assay Alr1 activity, we observed approximately nine-fold more activity under Mg-deficient conditions.
View Article and Find Full Text PDFCAtion/H(+) eXchangers (CAXs) are integral membrane proteins that transport Ca(2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further characterize a CAX from yeast, VNX1, and initiate characterization of a zebrafish CAX (Cax1).
View Article and Find Full Text PDFMagnesium (Mg) is an essential enzyme cofactor and a key structural component of biological molecules, but relatively little is known about the molecular components required for Mg homeostasis in eukaryotic cells. The yeast genome encodes four characterized members of the CorA Mg transporter superfamily located in the plasma membrane (Alr1 and Alr2) or the mitochondrial inner membrane (Mrs2 and Lpe10). We describe a fifth yeast CorA homolog (Mnr2) required for Mg homeostasis.
View Article and Find Full Text PDFThe cation diffusion facilitator (CDF) family of metal ion transporters plays important roles in zinc transport at all phylogenetic levels. In this report, we describe a novel interaction between two members of the CDF family in Saccharomyces cerevisiae. One CDF member in yeast, Msc2p, was shown recently to be involved in zinc transport into the endoplasmic reticulum (ER) and required for ER function.
View Article and Find Full Text PDFA full-length cDNA (GintZnT1) encoding a putative Zn transporter was isolated from the extraradical mycelium of Glomus intraradices. Based on its sequence analysis, GintZnT1 was classified as a member of the cation diffusion facilitator (CDF) family of heavy metal transporters. Functional analysis of GintZnT1 was performed by heterologous expression in yeast mutants defective in different CDFs.
View Article and Find Full Text PDFIn this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis.
View Article and Find Full Text PDFZinc is an essential nutrient but toxic to cells with overaccumulation. For this reason, intracellular zinc levels are tightly controlled. In the yeast Saccharomyces cerevisiae, the Zrc1 and Cot1 proteins have been implicated in the storage and detoxification of excess zinc in the vacuole.
View Article and Find Full Text PDFThe yeast vacuole plays an important role in zinc homeostasis by storing zinc for later use under deficient conditions, sequestering excess zinc for its detoxification, and buffering rapid changes in intracellular zinc levels. The mechanisms involved in vacuolar zinc sequestration are only poorly characterized. Here we describe the properties of zinc transport systems in yeast vacuolar membrane vesicles.
View Article and Find Full Text PDF