Publications by authors named "Colin Thackray"

Global pollution has exacerbated accumulation of toxicants like methylmercury (MeHg) in seafood. Human exposure to MeHg has been associated with long-term neurodevelopmental delays and impaired cardiovascular health, while many micronutrients in seafood are beneficial to health. The largest MeHg exposure source for many general populations originates from marine fish that are harvested from the global ocean and sold in the commercial seafood market.

View Article and Find Full Text PDF
Article Synopsis
  • PFAS (per- and polyfluoroalkyl substances) are persistent chemicals found in humans, linked to health issues like immune problems and cancer.
  • Research shows PFAS bind differently to key blood proteins (HSA and globulins) based on the length of their carbon chains, affecting their transport and toxicity.
  • The varying levels of PFAS binding in individuals highlight the importance of these proteins in studying the health impacts of PFAS exposure.
View Article and Find Full Text PDF

Hazardous air pollutants emitted by United States (U.S) coal-fired power plants have been controlled by the Mercury and Air Toxics Standards (MATS) since 2012. Sociodemographic disparities in traditional air pollutant exposures from U.

View Article and Find Full Text PDF

Drinking water contamination by per- and polyfluoroalkyl substances (PFAS) is widespread near more than 300 United States (U.S.) military bases that used aqueous film-forming foams (AFFF) for fire training and firefighting activities.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs.

View Article and Find Full Text PDF

SignificanceRussian rivers are the predominant source of riverine mercury to the Arctic Ocean, where methylmercury biomagnifies to high levels in food webs. Pollution controls are thought to have decreased late-20th-century mercury loading to Arctic watersheds, but there are no published long-term observations on mercury in Russian rivers. Here, we present a unique hydrochemistry dataset to determine trends in Russian river particulate mercury concentrations and fluxes in recent decades.

View Article and Find Full Text PDF

We present a new chemical mechanism for Hg/Hg/Hg atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg by Br and OH, subsequent oxidation of Hg by ozone and radicals, respeciation of Hg in aerosols and cloud droplets, and speciated Hg photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.

View Article and Find Full Text PDF

Water supplies for millions of U.S. individuals exceed maximum contaminant levels for per- and polyfluoroalkyl substances (PFAS).

View Article and Find Full Text PDF

Hundreds of public water systems across the United States have been contaminated by the use of aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS) during firefighting and training activities. Prior work shows AFFF contain hundreds of polyfluoroalkyl precursors missed by standard methods. However, the most abundant precursors in AFFF remain uncertain, and mixture contents are confidential business information, hindering proactive management of PFAS exposure risks.

View Article and Find Full Text PDF

Mercury (Hg), a global contaminant, is emitted mainly in its elemental form Hg to the atmosphere where it is oxidized to reactive Hg compounds, which efficiently deposit to surface ecosystems. Therefore, the chemical cycling between the elemental and oxidized Hg forms in the atmosphere determines the scale and geographical pattern of global Hg deposition. Recent advances in the photochemistry of gas-phase oxidized Hg and Hg species postulate their photodissociation back to Hg as a crucial step in the atmospheric Hg redox cycle.

View Article and Find Full Text PDF

Perfluorocarboxylic acids (PFCAs) are environmental contaminants that are highly persistent, and many are bio-accumulative and have been detected along with their atmospheric precursors far from emission sources. The overall importance of precursor emissions as an indirect source of PFCAs to the environment is uncertain. Previous studies have estimated the atmospheric source of PFCAs using models and degradation pathways of differing complexities, leading to quantitatively different results.

View Article and Find Full Text PDF

National commitments under the Paris Agreement on climate change interact with other global environmental objectives, such as those of the Minamata Convention on Mercury. We assess how mercury emissions and deposition reductions from national climate policy in China under the Paris Agreement could contribute to the country's commitments under the Minamata Convention. We examine emissions under climate policy scenarios developed using a computable general equilibrium model of China's economy, end-of-pipe control scenarios that meet China's commitments under the Minamata Convention, and these policies in combination, and evaluate deposition using a global atmospheric transport model.

View Article and Find Full Text PDF

More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone.

View Article and Find Full Text PDF

Midlatitude anthropogenic mercury (Hg) emissions and discharge reach the Arctic Ocean (AO) by atmospheric and oceanic transport. Recent studies suggest that Arctic river Hg inputs have been a potentially overlooked source of Hg to the AO. Observations on Hg in Eurasian rivers, which represent 80% of freshwater inputs to the AO, are quasi-inexistent, however, putting firm understanding of the Arctic Hg cycle on hold.

View Article and Find Full Text PDF

Anthropogenic mercury (Hg(0)) emissions oxidize to gaseous Hg(II) compounds, before deposition to Earth surface ecosystems. Atmospheric reduction of Hg(II) competes with deposition, thereby modifying the magnitude and pattern of Hg deposition. Global Hg models have postulated that Hg(II) reduction in the atmosphere occurs through aqueous-phase photoreduction that may take place in clouds.

View Article and Find Full Text PDF

Mercury (Hg) is emitted to air by natural and anthropogenic sources, transports and deposits globally, and bioaccumulates to toxic levels in food webs. It is addressed under the global 2017 Minamata Convention, for which periodic effectiveness evaluation is required. Previous analyses have estimated the impact of different regulatory strategies for future mercury deposition.

View Article and Find Full Text PDF

Methylmercury (MeHg) concentrations can increase by 100 000 times between seawater and marine phytoplankton, but levels vary across sites. To better understand how ecosystem properties affect variability in planktonic MeHg concentrations, we develop a model for MeHg uptake and trophic transfer at the base of marine food webs. The model successfully reproduces measured concentrations in phytoplankton and zooplankton across diverse sites from the Northwest Atlantic Ocean.

View Article and Find Full Text PDF

We quantitatively examine the relative importance of uncertainty in emissions and physicochemical properties (including reaction rate constants) to Northern Hemisphere (NH) and Arctic polycyclic aromatic hydrocarbon (PAH) concentrations, using a computationally efficient numerical uncertainty technique applied to the global-scale chemical transport model GEOS-Chem. Using polynomial chaos (PC) methods, we propagate uncertainties in physicochemical properties and emissions for the PAHs benzo[a]pyrene, pyrene and phenanthrene to simulated spatially resolved concentration uncertainties. We find that the leading contributors to parametric uncertainty in simulated concentrations are the black carbon-air partition coefficient and oxidation rate constant for benzo[a]pyrene, and the oxidation rate constants for phenanthrene and pyrene.

View Article and Find Full Text PDF