Emulsion templating is a method that enables the production of highly porous and interconnected polymer foams called polymerized high internal phase emulsions (PolyHIPEs). Since emulsions are inherently unstable systems, they can be stabilized either by surfactants or by particles (Pickering HIPEs). Surfactant-stabilized HIPEs form materials with an interconnected porous structure, while Pickering HIPEs typically form closed pore materials.
View Article and Find Full Text PDFHighly porous emulsion templated polymers (PolyHIPEs) provide a number of potential advantages in the fabrication of scaffolds for tissue engineering and regenerative medicine. Porosity enables cell ingrowth and nutrient diffusion within, as well as waste removal from, the scaffold. The properties offered by emulsion templating alone include the provision of high interconnected porosity, and, in combination with additive manufacturing, the opportunity to introduce controlled multiscale porosity to complex or custom structures.
View Article and Find Full Text PDFThis review paper explores the potential of combining emulsion-based inks with additive manufacturing (AM) to produce filters for respiratory protective equipment (RPE) in the fight against viral and bacterial infections of the respiratory tract. The value of these filters has been highlighted by the current severe acute respiratory syndrome coronavirus-2 crisis where the importance of protective equipment for health care workers cannot be overstated. Three-dimensional (3D) printing of emulsions is an emerging technology built on a well-established field of emulsion templating to produce porous materials such as polymerized high internal phase emulsions (polyHIPEs).
View Article and Find Full Text PDFBone has a hierarchy of porosity that is often overlooked when creating tissue engineering scaffolds where pore sizes are typically confined to a single order of magnitude. High internal phase emulsion (HIPE) templating produces polymerized HIPEs (polyHIPEs): highly interconnected porous polymers which have two length scales of porosity covering the 1-100 μm range. However, additional larger scales of porosity cannot be introduced in the standard emulsion formulation.
View Article and Find Full Text PDFPeripheral nerves are basic communication structures guiding motor and sensory information from the central nervous system to receptor units. Severed peripheral nerve injuries represent a large clinical problem with relevant challenges to successful synthetic nerve repair scaffolds as substitutes to autologous nerve grafting. Numerous studies reported the use of hollow tubes made of synthetic polymers sutured between severed nerve stumps to promote nerve regeneration while providing protection for external factors, such as scar tissue formation and inflammation.
View Article and Find Full Text PDFAngiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach.
View Article and Find Full Text PDFPorous microspheres have the potential for use as injectable bone fillers to obviate the need for open surgery. Successful bone fillers must be able to support vascularisation since tissue engineering scaffolds often cease functioning soon after implantation due to a failure to vascularise rapidly. Here, we test the angiogenic potential of a tissue engineered bone filler based on a photocurable acrylate-based high internal phase emulsion (HIPE).
View Article and Find Full Text PDFThe continual renewal of the epidermis is thought to be related to the presence of populations of epidermal stem cells residing in physically protected microenvironments (rete ridges) directly influenced by the presence of mesenchymal fibroblasts. Current skin in vitro models do acknowledge the influence of stromal fibroblasts in skin reorganisation but the study of the effect of the rete ridge-microenvironment on epidermal renewal still remains a rich topic for exploration. We suggest there is a need for the development of new in vitro models in which to study epithelial stem cell behaviour prior to translating these models into the design of new cell-free biomaterial devices for skin reconstruction.
View Article and Find Full Text PDFPorous composites containing hydroxyapatite (HA) were templated from high internal phase emulsions (HIPEs) and were further structured using direct-write UV stereolithography to produce composite scaffolds with multi-scale porosity. FTIR, TGA and SEM analyses confirmed that HA was retained after photocuring and subsequent treatments and was incorporated within the polymerised HIPE (polyHIPE). The addition of HA particles to the polyHIPE caused changes in the mechanical properties of the material.
View Article and Find Full Text PDFThis article presents data related to the research article titled, 'Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering' (Owen et al., in press) [1]. This data article contains excel files with the results obtained during the mechanical characterisation of 20 acrylate-based PolyHIPE compositions, giving the Young's modulus, ultimate tensile stress and strain at failure for each specimen tested.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2016
Polymerised High Internal Phase Emulsions (PolyHIPEs) are manufactured via emulsion templating and exhibit a highly interconnected microporosity. These materials are commonly used as thin membranes for 3D cell culture. This study uses emulsion templating in combination with microstereolithography to fabricate PolyHIPE scaffolds with a tightly controlled and reproducible architecture.
View Article and Find Full Text PDFMicro-stereolithography (μSL) is used to produce 3D porous polymer structures by templating high internal phase emulsions. A variety of structures are produced, including lines, squares, grids, and tubes. The porosity matches that of materials produced by conventional photopolymerization.
View Article and Find Full Text PDF