Autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma is characterized by the adoption of a white, spongy appearance of affected areas upon exposure to water. After exome sequencing, missense mutations were identified in AQP5, encoding water-channel protein aquaporin-5 (AQP5). Protein-structure analysis indicates that these AQP5 variants have the potential to elicit an effect on normal channel regulation.
View Article and Find Full Text PDFPalmoplantar keratodermas (PPKs) are a group of disorders that are diagnostically and therapeutically problematic in dermatogenetics. Punctate PPKs are characterized by circumscribed hyperkeratotic lesions on the palms and soles with considerable heterogeneity. In 18 families with autosomal dominant punctate PPK, we report heterozygous loss-of-function mutations in AAGAB, encoding α- and γ-adaptin-binding protein p34, located at a previously linked locus at 15q22.
View Article and Find Full Text PDFDuring recent decades, discoveries in genetic skin disease have produced insights into the biology of the skin, and in some cases permitted preventive prenatal diagnosis, but application of this knowledge in palliation or cure remains a tantalising prospect.
View Article and Find Full Text PDFMarie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals.
View Article and Find Full Text PDFWe recently reported two common filaggrin (FLG) null mutations that cause ichthyosis vulgaris and predispose to eczema and secondary allergic diseases. We show here that these common European mutations are ancestral variants carried on conserved haplotypes. To facilitate comprehensive analysis of other populations, we report a strategy for full sequencing of this large, highly repetitive gene, and we describe 15 variants, including seven that are prevalent.
View Article and Find Full Text PDFAtopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated.
View Article and Find Full Text PDFIchthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds.
View Article and Find Full Text PDFIn 1994, the molecular basis of pachyonychia congenita (PC) was elucidated. Four keratin genes are associated with the major subtypes of PC: K6a or K16 defects cause PC-1; and mutations in K6b or K17 cause PC-2. Mutations in keratins, the epithelial-specific intermediate filament proteins, result in aberrant cytoskeletal networks which present clinically as a variety of epithelial fragility phenotypes.
View Article and Find Full Text PDFJ Investig Dermatol Symp Proc
October 2005
Pachyonychia congenita (PC) is a rare genodermatosis affecting the nails, skin, oral mucosae, larynx, hair, and teeth. Pathogenic mutations in keratins K6a or K16 are associated with the PC-1 phenotype whereas K6b and K17 mutations are associated with the PC-2 phenotype. Analysis of clinical, pathological, and genetic data from the literature and two research registries reveal that >97% of PC cases exhibit fingernail and toenail thickening, and painful plantar keratoderma.
View Article and Find Full Text PDFJ Am Acad Dermatol
November 2005
Transgrediens et progrediens palmoplantar keratoderma, known as Greither's syndrome, was originally described in 1952 and is characterized by diffuse keratoderma of the palms and soles, extending to the back aspects (transgrediens) and involving the skin over the Achilles' tendon. Patchy hyperkeratosis also develops on the shins, knees, elbows, and sometimes on the skin flexures. We describe two unrelated families affected with Greither's syndrome, in which the same dominant missense mutation gave rise to the amino acid change N188S in K1.
View Article and Find Full Text PDFATP2C1, encoding the human secretory pathway Ca(2+)-ATPase (hSPCA1), was recently identified as the defective gene in Hailey-Hailey disease (HHD), an autosomal dominant skin disorder characterized by abnormal keratinocyte adhesion in the suprabasal layers of the epidermis. In this study, we used denaturing high-performance liquid chromatography to screen all 28 exons and flanking intron boundaries of ATP2C1 for mutations in 9 HHD patients. Nine different mutations were identified.
View Article and Find Full Text PDFLaryngo-onycho-cutaneous (LOC or Shabbir) syndrome (OMIM 245660) is an autosomal recessive epithelial disorder confined to the Punjabi Muslim population. The condition is characterized by cutaneous erosions, nail dystrophy and exuberant vascular granulation tissue in certain epithelia, especially conjunctiva and larynx. Genome-wide homozygosity mapping localized the gene to a 2 Mb region on chromosome 18q11.
View Article and Find Full Text PDFLipoid proteinosis (LP), also known as hyalinosis cutis et mucosae or Urbach-Wiethe disease (OMIM 247100) is a rare, autosomal recessive disorder typified by generalized thickening of skin, mucosae and certain viscera. Classical features include beaded eyelid papules and laryngeal infiltration leading to hoarseness. Histologically, there is widespread deposition of hyaline (glycoprotein) material and disruption/reduplication of basement membrane.
View Article and Find Full Text PDFHailey-Hailey disease is an autosomal dominant skin disorder characterized by suprabasal cell separation (acantholysis) of the epidermis. Mutations in ATP2C1, the gene encoding a novel, P-type Ca2+-transport ATPase, were recently found to cause Hailey-Hailey disease. In this study, we used conformation-sensitive gel electrophoresis to screen all 28 translated exons of ATP2C1 in 24 Hailey-Hailey disease families and three sporadic cases with the disorder.
View Article and Find Full Text PDF