Publications by authors named "Colin Rathbun"

Bioluminescent tools can illuminate cellular features in whole organisms. Multi-component tracking remains challenging, though, owing to a lack of well-resolved probes and long imaging times. To address the need for more rapid, quantitative, and multiplexed bioluminescent readouts, we developed an analysis pipeline featuring sequential substrate administration and serial image acquisition.

View Article and Find Full Text PDF

Studies of biological function demand probes that can report on processes in real time and in physiological environments. Bioluminescent tools are uniquely suited for this purpose, as they enable sensitive imaging in cells and tissues. Bioluminescent reporters can also be monitored continuously over time without detriment, as excitation light is not required.

View Article and Find Full Text PDF
Article Synopsis
  • The central dogma simplifies the flow of genetic information as DNA to RNA to proteins, but it fails to acknowledge that most of our genome produces non-coding RNAs that play important regulatory roles.
  • Advances in RNA biology have been hampered by limited tools for visualizing RNA in live cells.
  • Recent innovations using RNA binding proteins and chemical biology have led to the development of effective fluorescent tagging tools to study RNA dynamics, localization, and function in living mammalian cells.
View Article and Find Full Text PDF

Bioluminescence imaging with luciferase enzymes and luciferin small molecules is a well-established technique for tracking cells and other biological features in rodent models. Despite its popularity, bioluminescence has long been hindered by a lack of distinguishable probes. Here we present a method to rapidly identify new substrate-selective luciferases for multicomponent imaging.

View Article and Find Full Text PDF

Directed evolution has proven to be an invaluable tool for protein engineering; however, there is still a need for developing new approaches to continue to improve the efficiency and efficacy of these methods. Here, we demonstrate a new method for library design that applies a previously developed bioinformatic method, Statistical Coupling Analysis (SCA). SCA uses homologous enzymes to identify amino acid positions that are mutable and functionally important and engage in synergistic interactions between amino acids.

View Article and Find Full Text PDF

Bioluminescence with luciferase-luciferin pairs is an attractive method for surveying cells in live tissues and whole organisms. Recent advances in luciferin chemistry and luciferase engineering are further expanding the scope of the technology. It is now possible to spy on cells in a variety of deep tissues and visualize multicellular interactions, feats that are enabling new questions to be asked and new ideas to be explored.

View Article and Find Full Text PDF

Bioluminescence imaging with luciferase-luciferin pairs is widely used in biomedical research. Several luciferases have been identified in nature, and many have been adapted for tracking cells in whole animals. Unfortunately, the optimal luciferases for imaging in vivo utilize the same substrate and therefore cannot easily differentiate multiple cell types in a single subject.

View Article and Find Full Text PDF

We report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed.

View Article and Find Full Text PDF

Herein, the synthesis and characterization of an alkyne-modified luciferin is reported. This bioluminescent probe was accessed using C-H activation methodology and was found to be stable in solution and capable of light production with firefly luciferase. The luciferin analogue was also cell permeant and emitted more redshifted light than d-luciferin, the native luciferase substrate.

View Article and Find Full Text PDF

We demonstrate copper(II)-catalyzed acylation and tosylation of monosaccharides. Various carbohydrate derivatives, including glucopyranosides and ribofuranosides, are obtained in high yields and regioselectivities. Using this versatile strategy, the site of acylation can be switched by choice of ligand.

View Article and Find Full Text PDF

Rhodium-catalyzed intramolecular carboacylation of alkenes, achieved using quinolinyl ketones containing tethered alkenes, proceeds via the activation and functionalization of a carbon-carbon single bond. This transformation has been demonstrated using RhCl(PPh(3))(3) and [Rh(C(2)H(4))(2)Cl](2) catalysts. Mechanistic investigations of these systems, including determination of the rate law and kinetic isotope effects, were utilized to identify a change in mechanism with substrate.

View Article and Find Full Text PDF

The rhodium-catalyzed intramolecular carboacylation of quinolinyl ketones serves as an ideal subject for the mechanistic study of carbon-carbon bond activation. Combined kinetic and NMR studies of this reaction allowed the identification of the catalytic resting state and determination of the rate law, (12)C/(13)C kinetic isotope effects, and activation parameters. These results have identified the activation of a ketone-arene carbon-carbon single bond as the turnover-limiting step of catalysis and provided quantitative detail into this process.

View Article and Find Full Text PDF