The elastic modulus of the Baker's yeast (Saccharomyces cerevisiae) cell wall reported in studies using atomic force microscopy (AFM) is two orders of magnitude lower than that obtained using whole cell compression by micromanipulation. Using finite element modelling, it is shown that Hertz-Sneddon analysis cannot be applied to AFM indentation data for single layer core-shell structures. In addition, the Reissner solution for shallow homogeneous spheres is not appropriate for thick walls such as those of yeast cells.
View Article and Find Full Text PDFThe effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, N(JS), for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8-10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier.
View Article and Find Full Text PDFThe intrinsic cell wall mechanical properties of Baker's yeast (Saccharomyces cerevisiae) cells were determined. Force-deformation data from compression of individual cells up to failure were recorded, and these data were fitted by an analytical model to extract the elastic modulus of the cell wall and the initial stretch ratio of the cell. The cell wall was assumed to be homogeneous, isotropic, and incompressible.
View Article and Find Full Text PDFBased on two staining protocols, DiOC(6)(3)/propidium iodide (PI) and RedoxSensor Green (an indicator of bacterial reductase activity)/PI, multi-parameter flow cytometry and cell sorting has identified at least four distinguishable physiological states during batch cultures of Bacillus cereus. Furthermore, dependent on the position in the growth curve, single cells gave rise to varying numbers of colonies when sorted individually onto nutrient agar plates. These growing colonies derived from a single cell had widely different lag phases, inferred from differences in colony size.
View Article and Find Full Text PDFMany cells are considered to be susceptible to mechanical forces or "shear" in bioprocessing, leading to undesirable cell breakage or adverse metabolic effects. However, cell breakage is the aim of some processing operations, in particular high-pressure homogenisation and other cell disruption methods. In either case, the exact mechanisms of damage or disruption are obscure.
View Article and Find Full Text PDFA chondrocyte and its surrounding pericellular matrix (PCM) are defined as a chondron. Single chondrocytes and chondrons isolated from bovine articular cartilage were compressed by micromanipulation between two parallel surfaces in order to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during compression to various deformations and then holding.
View Article and Find Full Text PDFFluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity.
View Article and Find Full Text PDFA chondrocyte and its surrounding pericellular matrix (PCM) are defined as a chondron. The PCM plays a critical role in enhancing matrix production, protecting the chondrocyte during loading and transducing mechanical signals. Tissue engineering involves the design of artificial matrices which aim to mimic PCM function for mechanical strength and signalling motifs.
View Article and Find Full Text PDFThe chondron in articular cartilage includes the chondrocyte and its surrounding pericellular matrix (PCM). Single chondrocytes and chondrons were compressed between two parallel surfaces by a micromanipulation technique to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during deformation at various compression speeds and deformations up to cell rupture.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2009
In this article, we describe a new approach that allows the determination of the magnitude of force required to break single plant roots. Roots were taken from transgenic tobacco plants, expressing a secreted monoclonal antibody. They were divided into four key developmental stages.
View Article and Find Full Text PDFMicrobiology (Reading)
September 1997
The pH-regulated expression of the acid (AXP) and alkaline (AEP) extracellular proteases of the yeast Yarrowia lipolytica 148 was analysed. Expression in batch and continuous cultures was determined at the mRNA level by Northern blotting, and at the enzyme level by enzyme assays and Western blotting. Culture pH regulated AEP and AXP expression predominantly at the level of mRNA content.
View Article and Find Full Text PDF