Publications by authors named "Colin R Meyer"

Amplified warming of high latitudes and rapid thaw of frozen ground threaten permafrost carbon stocks. The presence of permafrost modulates water infiltration and flow, as well as sediment transport, on soil-mantled slopes, influencing the balance of advective fluvial processes to diffusive processes on hillslopes in ways that are different from temperate settings. These processes that shape permafrost landscapes also impact the carbon stored on soil-mantled hillslopes via temperature, saturation, and slope stability such that carbon stocks and landscape morphometry should be closely linked.

View Article and Find Full Text PDF

Stearns and van der Veen (Reports, 20 July 2018, p. 273) conclude that fast glacier sliding is independent of basal drag (friction), even where drag balances most of the driving stress. This conclusion raises fundamental physical issues, the most striking of which is that sliding velocity would be independent of stresses imparted through the ice column, including gravitational driving stress.

View Article and Find Full Text PDF

Discharge from sliding outlet glaciers controls uncertainty in projections for future sea level. Remarkably, over 90% of glacial area is subject to gravitational driving stresses below 150 kPa (median ∼70 kPa). Longstanding explanations that appeal to the shear-thinning rheology of ice tend to overpredict driving stresses and are restricted to areas where ice sheets only deform (roughly 50%).

View Article and Find Full Text PDF