Publications by authors named "Colin R McGowan"

Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr.

View Article and Find Full Text PDF

Arctic charr is an especially attractive aquaculture species given that it features the desirable tissue traits of other salmonids and is bred and grown at inland freshwater tank farms year round. It is of interest to develop upper temperature tolerant (UTT) strains of Arctic charr to increase the robustness of the species in the face of climate change and to enable production in more southern regions. We used a genomics approach that takes advantage of the well-studied Atlantic salmon genome to identify genes that are associated with UTT in Arctic charr.

View Article and Find Full Text PDF

Background: Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish.

Results: 298,304 expressed sequence tags (ESTs) from Atlantic salmon (69% of the total), 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases.

View Article and Find Full Text PDF