Publications by authors named "Colin P Farrell"

The inbred Babraham pig serves as a valuable biomedical model for research due to its high level of homozygosity, including in the major histocompatibility complex (MHC) loci and likely other important immune-related gene complexes, which are generally highly diverse in outbred populations. As the ability to control for this diversity using inbred organisms is of great utility, we sought to improve this resource by generating a long-read whole genome assembly and transcriptome atlas of a Babraham pig. The genome was de novo assembled using PacBio long reads and error-corrected using Illumina short reads.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and post-operative atrial fibrillation (POAF) is a major healthcare burden, contributing to an increased risk of stroke, kidney failure, heart attack and death. Genetic studies have identified associations with AF, but no molecular diagnostic exists to predict POAF based on pre-operative measurements. Such a tool would be of great value for perioperative planning to improve patient care and reduce healthcare costs.

View Article and Find Full Text PDF

In eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from uses combinations of Mn, Zn, and Fe as enzymatic cofactors.

View Article and Find Full Text PDF
Article Synopsis
  • Acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria are inherited conditions that follow an autosomal dominant pattern, meaning just one copy of the mutated gene can cause the disease.
  • These conditions show different symptoms in different people, which makes them difficult to predict.
  • Research found that a gene called ABCB6 doesn't affect how severe these diseases are, so testing for it in patients isn’t necessary.
View Article and Find Full Text PDF

γδ T cells constitute a major portion of lymphocytes in the blood of both ruminants and swine. Subpopulations of swine γδ T cells have been distinguished by CD2 and CD8α expression. However, it was not clear if they have distinct expression profiles of their T-cell receptor (TCR) or WC1 genes.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA)-independent, T cell-mediated targeting of cancer cells would allow immune destruction of malignancies in all individuals. Here, we use genome-wide CRISPR-Cas9 screening to establish that a T cell receptor (TCR) recognized and killed most human cancer types via the monomorphic MHC class I-related protein, MR1, while remaining inert to noncancerous cells. Unlike mucosal-associated invariant T cells, recognition of target cells by the TCR was independent of bacterial loading.

View Article and Find Full Text PDF

In an iron deficient child, oral iron repeatedly failed to improve the condition. Whole exome sequencing identified one previously reported plus two novel mutation in the TMPRSS6 gene, with no mutations in other iron-associated genes. We propose that these mutations result in a novel variety of iron-refractory iron deficiency anemia.

View Article and Find Full Text PDF

Unlabelled: Both familial and sporadic porphyria cutanea tarda (PCT) are iron dependent diseases. Symptoms of PCT resolve when iron stores are depleted by phlebotomy, and a sequence variant of HFE (C282Y, c.843G>A, rs1800562) that enhances iron aborption by reducing hepcidin expression is a risk factor for PCT.

View Article and Find Full Text PDF

Diagnostic genetic testing for hereditary hemochromatosis is readily available for clinically relevant HFE variants (i.e., those that generate the C282Y, H63D and S65C HFE polymorphisms); however, genetic testing for other known causes of iron overload, including mutations affecting genes encoding hemojuvelin, transferrin receptor 2, HAMP, and ferroportin is not.

View Article and Find Full Text PDF