Nanoparticle-mediated mRNA delivery has emerged as a promising therapeutic modality, but its growth is still limited by the discovery and optimization of effective and well-tolerated delivery strategies. Lipid nanoparticles containing charged or ionizable lipids are an emerging standard for in vivo mRNA delivery, so creating facile, tunable strategies to synthesize these key lipid-like molecules is essential to advance the field. Here, we generate a library of N-substituted glycine oligomers, peptoids, and undertake a multistage down-selection process to identify lead candidate peptoids as the ionizable component in our Nutshell nanoparticle platform.
View Article and Find Full Text PDFWe report the development of post-transcriptional chemical methods that enable control over CRISPR-Cas9 gene editing activity both in assays and in living cells. We show that an azide-substituted acyl imidazole reagent (NAI-N) efficiently acylates CRISPR single guide RNAs (sgRNAs) in 20 minutes in buffer. Poly-acylated ("cloaked") sgRNA was completely inactive in DNA cleavage with Cas9 , and activity was quantitatively restored after phosphine treatment.
View Article and Find Full Text PDFLocalized expression of effector molecules can initiate antitumor responses through engagement of specific receptors on target cells in the tumor microenvironment. These locally induced responses may also have a systemic effect, clearing additional tumors throughout the body. In this study, to evoke systemic antitumor responses, we utilized charge-altering releasable transporters (CART) for local intratumoral delivery of mRNA coding for costimulatory and immune-modulating factors.
View Article and Find Full Text PDFInorganic polyphosphate (polyP) is an often-overlooked biopolymer of phosphate residues present in living cells. PolyP is associated with many essential biological roles. Despite interest in polyP's function, most studies have been limited to extracellular or isolated protein experiments, as polyanionic polyP does not traverse the nonpolar membrane of cells.
View Article and Find Full Text PDFIn vivo delivery of antigen-encoding mRNA is a promising approach to personalized cancer treatment. The therapeutic efficacy of mRNA vaccines is contingent on safe and efficient gene delivery, biological stability of the mRNA, and the immunological properties of the vaccine. Here we describe the development and evaluation of a versatile and highly efficient mRNA vaccine-delivery system that employs charge-altering releasable transporters (CARTs) to deliver antigen-coding mRNA to antigen-presenting cells (APCs).
View Article and Find Full Text PDFWe report a strategy for generating a combinatorial library of oligonucleotide transporters with varied lipid domains and their use in the efficient transfection of lymphocytes with mRNA in vitro and in vivo. This library is based on amphiphilic charge-altering releasable transporters (CARTs) that contain a lipophilic block functionalized with various side-chain lipids and a polycationic α-amino ester mRNA-binding block that undergoes rearrangement to neutral small molecules, resulting in mRNA release. We show that certain binary mixtures of these lipid-varied CARTs provide up to a ninefold enhancement in mRNA translation in lymphocytes in vitro relative to either a single-lipid CART component alone or the commercial reagent Lipofectamine 2000, corresponding to a striking increase in percent transfection from 9-12% to 80%.
View Article and Find Full Text PDFFunctional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells.
View Article and Find Full Text PDFThe design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications.
View Article and Find Full Text PDFInositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7.
View Article and Find Full Text PDF