Hospital environments are excellent reservoirs for the opportunistic pathogen Acinetobacter baumannii in part because it is exceptionally tolerant to desiccation. We found that relative to other A. baumannii strains, the virulent strain AB5075 was strikingly desiccation resistant at 2% relative humidity (RH), suggesting that it is a good model for studies of the functional basis of this trait.
View Article and Find Full Text PDFTeredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds.
View Article and Find Full Text PDFThe P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism, and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing, and other traits.
View Article and Find Full Text PDFMutant phenotype analysis of bacteria has been revolutionized by genome-scale screening procedures, but essential genes have been left out of such studies because mutants are missing from the libraries analyzed. Since essential genes control the most fundamental processes of bacterial life, this is a glaring deficiency. To address this limitation, we developed a procedure for transposon insertion mutant sequencing that includes essential genes.
View Article and Find Full Text PDFInhaled aztreonam is increasingly used for chronic suppression in patients with cystic fibrosis (CF), but the potential for that organism to evolve aztreonam resistance remains incompletely explored. Here, we performed genomic analysis of clonally related pre- and posttreatment CF clinical isolate pairs to identify genes that are under positive selection during aztreonam therapy We identified 16 frequently mutated genes associated with aztreonam resistance, the most prevalent being and , and 13 of which increased aztreonam resistance when introduced as single gene transposon mutants. Several previously implicated aztreonam resistance genes were found to be under positive selection in clinical isolates even in the absence of inhaled aztreonam exposure, indicating that other selective pressures in the cystic fibrosis airway can promote aztreonam resistance.
View Article and Find Full Text PDFTo characterize the consequences of eliminating essential functions needed for peptidoglycan synthesis, we generated deletion mutations of Acinetobacter baylyi by natural transformation and visualized the resulting microcolonies of dead cells. We found that loss of genes required for peptidoglycan precursor synthesis or polymerization led to the formation of polymorphic giant cells with diameters that could exceed ten times normal. Treatment with antibiotics targeting early or late steps of peptidoglycan synthesis also produced giant cells.
View Article and Find Full Text PDFChronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood.
View Article and Find Full Text PDFIn 2016, the World Health Organization deemed antibiotic resistance one of the biggest threats to global health, food security, and development. The need for new methods to combat infections caused by antibiotic resistant pathogens will require a variety of approaches to identifying effective new therapeutic strategies. One approach is the identification of small molecule adjuvants that potentiate the activity of antibiotics of demonstrated utility, whose efficacy is abated by resistance, both acquired and intrinsic.
View Article and Find Full Text PDFWhile much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2018
Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation.
View Article and Find Full Text PDFExtreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Three lines of evidence establish the primacy of core functions in this resistance.
View Article and Find Full Text PDFIt is well known that many bacteria can survive in a growth-arrested state for long periods of time, on the order of months or even years, without forming dormant structures like spores or cysts. How is such longevity possible? What is the molecular basis of such longevity? Here we used the Gram-negative phototrophic alphaproteobacterium to identify molecular determinants of bacterial longevity. maintained viability for over a month after growth arrest due to nutrient depletion when it was provided with light as a source of energy.
View Article and Find Full Text PDFand other carbapenem-resistant members of the family are a major cause of hospital-acquired infections, yet the basis of their success as nosocomial pathogens is poorly understood. To help provide a foundation for genetic analysis of , we created an arrayed, sequence-defined transposon mutant library of an isolate from the 2011 outbreak of infections at the U.S.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline.
View Article and Find Full Text PDFThe nosocomial pathogen Acinetobacter baumannii is a frequent cause of hospital-acquired infections worldwide and is a challenge for treatment due to its evolved resistance to antibiotics, including carbapenems. Here, to gain insight on A. baumannii antibiotic resistance mechanisms, we analyse the protein interaction network of a multidrug-resistant A.
View Article and Find Full Text PDFUnlabelled: Rhodopseudomonas palustris is an alphaproteobacterium that has served as a model organism for studies of photophosphorylation, regulation of nitrogen fixation, production of hydrogen as a biofuel, and anaerobic degradation of aromatic compounds. This bacterium is able to transition between anaerobic photoautotrophic growth, anaerobic photoheterotrophic growth, and aerobic heterotrophic growth. As a starting point to explore the genetic basis for the metabolic versatility of R.
View Article and Find Full Text PDFInterspecies protein-protein interactions are essential mediators of infection. While bacterial proteins required for host cell invasion and infection can be identified through bacterial mutant library screens, information about host target proteins and interspecies complex structures has been more difficult to acquire. Using an unbiased chemical crosslinking/mass spectrometry approach, we identified interspecies protein-protein interactions in human lung epithelial cells infected with Acinetobacter baumannii.
View Article and Find Full Text PDFBacterial lineages that chronically infect cystic fibrosis (CF) patients genetically diversify during infection. However, the mechanisms driving diversification are unknown. By dissecting ten CF lung pairs and studying ∼12,000 regional isolates, we were able to investigate whether clonally related Pseudomonas aeruginosa inhabiting different lung regions evolve independently and differ functionally.
View Article and Find Full Text PDFGenetically susceptible bacteria become antibiotic tolerant during chronic infections, and the mechanisms responsible are poorly understood. One factor that may contribute to differential sensitivity in vitro and in vivo is differences in the time-dependent tobramycin concentration profile experienced by the bacteria. Here, we examine the proteome response induced by subinhibitory concentrations of tobramycin in Pseudomonas aeruginosa cells grown under planktonic conditions.
View Article and Find Full Text PDFThe essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition--growth in a rich undefined medium--and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum.
View Article and Find Full Text PDFUnlabelled: Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A.
View Article and Find Full Text PDFIn pathogenic Gram-negative bacteria, interactions among membrane proteins are key mediators of host cell attachment, invasion, pathogenesis, and antibiotic resistance. Membrane protein interactions are highly dependent upon local properties and environment, warranting direct measurements on native protein complex structures as they exist in cells. Here we apply in vivo chemical cross-linking mass spectrometry, to reveal the first large-scale protein interaction network in Pseudomonas aeruginosa, an opportunistic human pathogen, by covalently linking interacting protein partners, thereby fixing protein complexes in vivo.
View Article and Find Full Text PDFContact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins.
View Article and Find Full Text PDFUnlabelled: We constructed a near-saturation transposon mutant library for Burkholderia thailandensis, a low-virulence surrogate for the causative agent of melioidosis (Burkholderia pseudomallei). A primary set of nearly 42,000 unique mutants (~7.5 mutants/gene) was generated using transposon Tn5 derivatives.
View Article and Find Full Text PDF