Publications by authors named "Colin M Stopper"

Behavioral economics is a powerful, translational approach for measuring drug demand in both humans and animals. Here, we asked if demand for cocaine in rats with limited drug experience could be used to identify individuals most at risk of expressing an addiction phenotype following either long- or intermittent access self-administration schedules, both of which model the transition to uncontrolled drug-seeking. Because the orexin-1 receptor antagonist SB-334867 (SB) is particularly effective at reducing drug-seeking in highly motivated individuals, we also asked whether demand measured after prolonged drug experience could predict SB efficacy.

View Article and Find Full Text PDF

Background: The orexin (hypocretin) system is important for reward-driven motivation but has not been implicated in the expression of a multiphenotype addicted state.

Methods: Rats were assessed for economic demand for cocaine before and after 14 days of short access, long access, or intermittent access (IntA) to cocaine. Rats were also assessed for a number of other DSM-5-relevant addiction criteria following differential access conditions.

View Article and Find Full Text PDF

Rationale: Catecholamine transmission modulates numerous cognitive and reward-related processes that can subserve more complex functions such as cost/benefit decision making. Dopamine has been shown to play an integral role in decisions involving reward uncertainty, yet there is a paucity of research investigating the contributions of noradrenaline (NA) transmission to these functions.

Objectives: The present study was designed to elucidate the contribution of NA to risk/reward decision making in rats, assessed with a probabilistic discounting task.

View Article and Find Full Text PDF

Abnormal reinforcement learning and representations of reward value are present in schizophrenia, and these impairments can manifest as deficits in risk/reward decision making. These abnormalities may be due in part to dopaminergic dysfunction within cortico-limbic-striatal circuitry. Evidence from studies with laboratory animal have revealed that normal DA activity within different nodes of these circuits is critical for mediating dissociable processes that can refine decision biases.

View Article and Find Full Text PDF

Phasic increases and decreases in dopamine (DA) transmission encode reward prediction errors thought to facilitate reward-related learning, yet how these signals guide action selection in more complex situations requiring evaluation of different reward remains unclear. We manipulated phasic DA signals while rats performed a risk/reward decision-making task, using temporally discrete stimulation of either the lateral habenula (LHb) or rostromedial tegmental nucleus (RMTg) to suppress DA bursts (confirmed with neurophysiological studies) or the ventral tegmental area (VTA) to override phasic dips. When rats chose between small/certain and larger/risky rewards, LHb or RMTg stimulation, time-locked to delivery of one of these rewards, redirected bias toward the alternative option, whereas VTA stimulation after non rewarded choices increased risky choice.

View Article and Find Full Text PDF

The lateral habenula (LHb) is believed to convey an aversive or 'anti-reward' signal, but its contribution to reward-related action selection is unknown. We found that LHb inactivation abolished choice biases, making rats indifferent when choosing between rewards associated with different subjective costs and magnitudes, but not larger or smaller rewards of equal cost. Thus, instead of serving as an aversion center, the evolutionarily conserved LHb acts as a preference center that is integral for expressing subjective decision biases.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost-benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty.

View Article and Find Full Text PDF

Separate regions of the orbitofrontal cortex (OFC) have been implicated in mediating different aspects of cost-benefit decision-making in humans and animals. Anatomical and functional imaging studies indicate that the medial (mOFC) and lateral OFC may subserve dissociable functions related to reward and decision-making processes, yet the majority of studies in rodents have focused on the lateral OFC. The present study investigated the contribution of the rat mOFC to risk and delay-based decision-making, assessed with probabilistic and delay-discounting tasks.

View Article and Find Full Text PDF

Choosing between smaller, assured rewards or larger, uncertain ones requires reconciliation of competing biases toward more certain or riskier options. We used disconnection and neuroanatomical techniques to reveal that separate, yet interconnected, neural pathways linking the medial prefrontal cortex (PFC), the basolateral amygdala (BLA), and nucleus accumbens (NAc) contribute to these different decision biases in rats. Disrupting communication between the BLA and NAc revealed that this subcortical circuit biases choice toward larger, uncertain rewards on a probabilistic discounting task.

View Article and Find Full Text PDF

Rationale: Adenosine A(2A) antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone.

Objective: The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) has been implicated in mediating different forms of decision making in humans and animals. In the present study, we observed that inactivation of the rat NAc, via infusion of GABA agonists, reduced preference for a large/risky option and increased response latencies on a probabilistic discounting task. Discrete inactivations of the NAc shell and core revealed further differences between these regions in mediating choice and response latencies, respectively.

View Article and Find Full Text PDF

Goal-directed actions are sensitive to work-related response costs, and dopamine in nucleus accumbens is thought to modulate the exertion of effort in motivated behavior. Dopamine-rich striatal areas such as nucleus accumbens also contain high numbers of adenosine A(2A) receptors, and, for that reason, the behavioral and neurochemical effects of the adenosine A(2A) receptor agonist CGS 21680 [2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine] were investigated. Stimulation of accumbens adenosine A(2A) receptors disrupted performance of an instrumental task with high work demands (i.

View Article and Find Full Text PDF