Objective: Local interaction between soluble mediators within the inflamed synovium is a key factor that governs the pathologic outcome of inflammatory arthritides. Our aim was to investigate the interplay between the Th1 lymphokine interferon-gamma (IFNgamma) and pivotal cytokines that drive rheumatoid arthritis (RA) pathology (interleukin-1beta [IL-1beta] and tumor necrosis factor alpha [TNFalpha]) in modulating inflammation and arthritis in vitro and in vivo.
Methods: Monarticular antigen-induced arthritis (AIA) was initiated in IFNgamma-deficient (IFNgamma(-/-)) mice and age-matched wild-type (IFNgamma(+/+)) mice.
The large aggregating proteoglycan, aggrecan, better known for its physiological role in articular cartilage where it serves to facilitate resistance of compressive forces during joint articulation, is also present within the distinct functional regions of tendon (i.e., compressed/fibrocartilaginous and tensional).
View Article and Find Full Text PDFHyaluronan (HA) and link protein are essential components of the aggrecan proteoglycan aggregate, whereby HA binds multiple aggrecan monomers, an interaction which is stabilised by link protein. In this study, we have examined the turnover of the aggregate components, HA, link protein, and the N-terminal G1 domain of aggrecan, in explant cultures of tissue from compressed and tensional regions of young and mature bovine tendons. Western blot analyses revealed the release of highly processed link protein and G1-containing metabolites, in the absence of catabolic agents, indicating an increased turnover of these components in tendon.
View Article and Find Full Text PDFDrug Discov Today
February 2004
Arthritis is a common disease in which the end-point results in joint replacement surgery. This article reviews the use of nutraceuticals as alternative treatments for pathological manifestations of arthritic disease. The efficacy of fish oils (e.
View Article and Find Full Text PDFCartilage superficial zone protein/proteoglycan (SZP) or proteoglycan 4 (PRG4), has been demonstrated to have the potential for several distinct biological functions including cytoprotection, lubrication and matrix binding. In the present study, we have examined both the immunolocalisation and the mRNA expression pattern of PRG4 in tissue harvested from the compressed and tensional regions of young and mature bovine tendons. Immunohistochemical analyses, utilizing monoclonal antibody 3-A-4 which recognizes a conformational-dependent epitope on native PRG4, demonstrated that PRG4 is present predominantly at the surface of fibrocartilaginous regions of tendon, with the intensity of immunoreactivity in this region increasing with age.
View Article and Find Full Text PDFAlthough the clinical benefits of dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) has been recognised for a number of years, the molecular mechanisms by which particular PUFA affect metabolism of cells within the synovial joint tissues are not understood. This study set out to investigate how n-3 PUFA and other classes of fatty acids affect both degradative and inflammatory aspects of metabolism of articular cartilage chondrocytes using an in vitro model of cartilage degradation. Using well-established culture models, cartilage explants from normal bovine and human osteoarthritic cartilage were supplemented with either n-3 or n-6 PUFA, and cultures were subsequently treated with interleukin 1 to initiate catabolic processes that mimic cartilage degradation in arthritis.
View Article and Find Full Text PDFObjective: To determine if n-3 polyunsaturated fatty acid (PUFA) supplementation (versus treatment with n-6 polyunsaturated or other fatty acid supplements) affects the metabolism of osteoarthritic (OA) cartilage.
Methods: The metabolic profile of human OA cartilage was determined at the time of harvest and after 24-hour exposure to n-3 PUFAs or other classes of fatty acids, followed by explant culture for 4 days in the presence or absence of interleukin-1 (IL-1). Parameters measured were glycosaminoglycan release, aggrecanase and matrix metalloproteinase (MMP) activity, and the levels of expression of messenger RNA (mRNA) for mediators of inflammation, aggrecanases, MMPs, and their natural tissue inhibitors (tissue inhibitors of metalloproteinases [TIMPs]).