Water-soluble organic compounds (WSOCs) were extracted from corn stalk biochar produced at increasing pyrolysis temperatures (350-650 °C) and from the corresponding vapors, collected as bio-oil. WSOCs were characterized by gas chromatography (semivolatile fraction), negative electron spray ionization high resolution mass spectrometry (hydrophilic fraction) and fluorescence spectroscopy. The pattern of semivolatile WSOCs in bio-oil was dominated by aromatic products from lignocellulose, while in biochar was featured by saturated carboxylic acids from hemi/cellulose and lipids with concentrations decreasing with decreasing H/C ratios.
View Article and Find Full Text PDFThe comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil.
View Article and Find Full Text PDFHere we describe a mass spectrometry (MS) approach for biomarker discovery and structural characterization, based on both top-down and bottom-up analyses. Capillary electrophoresis (CE) coupled to electrospray ionization (ESI) time-of-flight (TOF) MS serves to separate and mass-measure the thousands of polypeptides contained in human urine. Statistical analysis of the differences between healthy control samples and patients with focal-segmental glomerulosclerosis, membranous glomerulonephritis, minimal change disease, IgA nephropathy, and diabetic nephropathy validates multiple biomarkers for the control and each of the diseases.
View Article and Find Full Text PDF