Publications by authors named "Colin H Macphee"

Introduction: Because MRGPRX2 is now recognized as the mast cell receptor for basic secretagogues, there is currently a tremendous interest in whether MRGRPX2 could play an important role in various pruritic dermatoses such as chronic spontaneous urticaria. Therefore, we sought to identify new potent and selective antagonists to pharmacologically characterize the biological role of MRGPRX2.

Methods: Various relevant , , and model systems were used to investigate the role of MRGPRX2.

View Article and Find Full Text PDF

Mast cells (MCs) are tissue-resident immune cells known to degranulate in response to FcεRI crosslinking or MRGPRX2 engagement. MCs are found close to nerves, but the mechanisms that regulate this privileged localization remain unclear. Here, we investigated MRGPRX2 expression patterns and specific activities in MCs.

View Article and Find Full Text PDF

Aims/hypothesis: Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity has an independent prognostic association with major coronary events (MCE). However, no study has investigated whether type 2 diabetes status modifies the effect of Lp-PLA2 activity or inhibition on the risk of MCE. We investigate the interaction between diabetes status and Lp-PLA2 activity with risk of MCE.

View Article and Find Full Text PDF

Iron overload disorders are characterized by the body's inability to regulate iron absorption and its storage which can lead to organ failures. Accumulated evidence has revealed that hepcidin, the master regulator of iron homeostasis, is negatively modulated by TMPRSS6 (matriptase-2), a liver-specific type II transmembrane serine protease (TTSP). Here, we report that treatment with a peptidomimetic inhibitor affecting TMPRSS6 activity increases hepcidin production in hepatic cells.

View Article and Find Full Text PDF

Background And Aims: Lipoprotein-associated phospholipase A (Lp-PLA), an enzymatic inflammatory biomarker primarily bound to low-density lipoprotein cholesterol, is associated with an approximate twofold increased risk of cardiovascular disease and stroke. Despite indications that circulating Lp-PLA is sensitive to statins, it remains largely unknown whether statin usage exerts local effects on Lp-PLA expression at the site of atheromatous plaque.

Methods: Carotid plaques (n = 38) were prospectively collected from symptomatic (n = 18) and asymptomatic (n = 20) patients with (n = 20) or without (n = 18) documented statin history.

View Article and Find Full Text PDF

Using a porcine model of diabetes mellitus and hypercholesterolaemia, we previously showed that diabetes mellitus and hypercholesterolaemia is associated with a chronic increase in blood-brain barrier permeability in the cerebral cortex, leading to selective binding of immunoglobulin G and deposition of amyloid-beta peptide in pyramidal neurons. Treatment with Darapladib (GlaxoSmithKline, SB480848), an inhibitor of lipoprotein-associated phospholipase-A2, alleviated these effects. Here, investigation of the effects of chronic diabetes mellitus and hypercholesterolaemia on the pig retina revealed a corresponding increased permeability of the blood-retina barrier coupled with a leak of plasma components into the retina, alterations in retinal architecture, selective IgG binding to neurons in the ganglion cell layer, thinning of retinal layers due to cell loss and increased glial fibrillary acidic protein expression in Müller cells, all of which were curtailed by treatment with Darapladib.

View Article and Find Full Text PDF

Background: Despite systemic exposure to risk factors, the circulatory system develops varying patterns of atherosclerosis for unclear reasons. In a porcine model, we investigated the relationship between site-specific lesion development and inflammatory pathways involved in the coronary arteries (CORs) and distal abdominal aortas (AAs).

Methods And Results: Diabetes mellitus (DM) and hypercholesterolemia (HC) were induced in 37 pigs with 3 healthy controls.

View Article and Find Full Text PDF

Background: The aim of this study was to assess the effects of darapladib, a selective oral investigational lipoprotein-associated phospholipase A2 inhibitor, on both plasma and plaque lipoprotein-associated phospholipase A2 activity.

Methods: Patients undergoing elective carotid endarterectomy were randomized to darapladib 40 mg (n = 34), 80 mg (n = 34), or placebo (n = 34) for 14 days, followed by carotid endarterectomy 24 hours after the last dose of study medication.

Results: Darapladib 40 mg and 80 mg reduced plasma lipoprotein-associated phospholipase A2 activity by 52% and 81%, respectively, versus placebo (both P<0.

View Article and Find Full Text PDF

Background: We explored the theorized upregulation of platelet-activating factor (PAF)- mediated biologic responses following lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibition using human platelet aggregation studies in an in vitro experiment and in 2 clinical trials.

Methods And Results: Full platelet aggregation concentration response curves were generated in vitro to several platelet agonists in human plasma samples pretreated with rilapladib (selective Lp-PLA2 inhibitor) or vehicle. This was followed by a randomized, double-blind crossover study in healthy adult men (n = 26) employing a single-agonist dose assay of platelet aggregation, after treatment of subjects with 250 mg oral rilapladib or placebo once daily for 14 days.

View Article and Find Full Text PDF

Diabetes mellitus (DM) and hypercholesterolemia (HC) have emerged as major risk factors for Alzheimer's disease, highlighting the importance of vascular health to normal brain functioning. Our previous study showed that DM and HC favor the development of advanced coronary atherosclerosis in a porcine model, and that treatment with darapladib, an inhibitor of lipoprotein-associated phospholipase A2, blocks atherosclerosis progression and improves animal alertness and activity levels. In the present study, we examined the effects of DM and HC on the permeability of the blood-brain barrier (BBB) using immunoglobulin G (IgG) as a biomarker.

View Article and Find Full Text PDF

Ca(2+)-independent lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a member of the phospholipase A(2) superfamily with a distinguishing characteristic of high specificity for oxidatively modified sn-2 fatty acid residues in phospholipids that has been especially well characterized for peroxidized species of phosphatidylcholines (PC). The ability of Lp-PLA(2) to hydrolyze peroxidized species of phosphatidylserine (PS), acting as a recognition signal for clearance of apoptotic cells by professional phagocytes, as well as the products of the reaction has not been investigated. We performed liquid chromatography-electrospray ionization mass spectrometry-based structural characterization of oxygenated, hydrolyzed molecular species of PS-containing linoleic acid in either the sn-2 position (C(18:0)/C(18:2)) or in both sn-1 and sn-2 positions (C(18:2)/C(18:2)), formed in the cytochrome c- and H(2)O(2)-driven enzymatic oxidation reaction.

View Article and Find Full Text PDF

Unlabelled: Purpose- This study assessed the pharmacological effect of a novel selective C-C chemokine receptor (CCR) 2 antagonist (GSK1344386B) on monocyte/macrophage infiltration into atherosclerotic plaque using magnetic resonance imaging (MRI) in an atherosclerotic mouse model.

Methods And Results: Apolipoprotein E(-/-) mice expressing human CCR2 were fed a Western diet (vehicle group) or a Western diet plus10 mg/kg per day of GSK1344386B (GSK1344386B group). After the baseline MRI, mice were implanted with osmotic pumps containing angiotensin II, 1000 ng/kg per minute, to accelerate lesion formation.

View Article and Find Full Text PDF

Purpose Of Review: There is substantial data from over 50 000 patients that increased lipoprotein-associated phospholipase A2 (Lp-PLA2) mass or activity is associated with an increased risk of cardiac death, myocardial infarction, acute coronary syndromes and ischemic stroke. However, only recently have data emerged demonstrating a role of Lp-PLA2 in development of advanced coronary artery disease. Indeed, Lp-PLA2 may be an important link between lipid homeostasis and the vascular inflammatory response.

View Article and Find Full Text PDF

Increased lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA(2) is a causative agent. Here we show that selective inhibition of Lp-PLA(2) with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA(2) activity and reduced lesion lysophosphatidylcholine content.

View Article and Find Full Text PDF

There is increasing evidence that modified phospholipid products of low density lipoprotein (LDL) oxidation mediate inflammatory processes within vulnerable atherosclerotic lesions. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is present in vulnerable plaque regions where it acts on phospholipid oxidation products to generate the pro-inflammatory lysophsopholipids and oxidized non-esterified fatty acids. This association together with identification of circulating Lp-PLA(2) levels as an independent predictor of cardiovascular disease provides a rationale for development of Lp-PLA(2) inhibitors as therapy for atherosclerosis.

View Article and Find Full Text PDF

Lysophosphatidylcholine (LPC) is the major bioactive lipid component of oxidized LDL, thought to be responsible for many of the inflammatory effects of oxidized LDL described in both inflammatory and endothelial cells. Inflammation-induced transformation of vascular smooth muscle cells from a contractile phenotype to a proliferative/secretory phenotype is a hallmark of the vascular remodeling that is characteristic of atherogenesis; however, the role of LPC in this process has not been fully described. The present study tested the hypothesis that LPC is an inflammatory stimulus in coronary artery smooth muscle cells (CASMCs).

View Article and Find Full Text PDF

Despite substantial progress in preventing adverse cardiovascular events with current therapeutic strategies, there remains an extensive residual risk of clinical events, particularly in high-risk patients. Because of the evidence implicating inflammation in the pathogenesis of atherosclerosis, identifying and targeting inflammatory pathways could help further reduce cardiovascular risk. There has been controversy regarding the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in atherosclerosis, partly because of the lack of simple animal models with a human-like pattern of Lp-PLA2 lipoprotein distribution.

View Article and Find Full Text PDF

Background: Liver X receptors (LXRs) are ligand-activated transcription factors involved in the control of lipid metabolism and inflammation. Synthetic LXR agonists have been shown to inhibit the progression of atherosclerosis in mice, but the mechanism is uncertain. LXR agonism upregulates the genes encoding ATP binding cassette transporters A1 (ABCA1) and G1 (ABCG1) in macrophages, thus promoting efflux of cholesterol; it also upregulates liver and intestinal ABCG5 and ABCG8, helping to promote biliary and fecal excretion of cholesterol.

View Article and Find Full Text PDF

Increased susceptibility to atherosclerosis increases the risk of mortality in type 2 diabetic patients. Leukocyte adhesion to the endothelium is a critical step in atherogenesis. In addition to its insulin-sensitizing effects, rosiglitazone (RSG) possesses anti-inflammatory properties.

View Article and Find Full Text PDF

Substituted 3-(phenylamino)-1H-pyrrole-2,5-diones were identified from a high throughput screen as inducers of human ATP binding cassette transporter A1 expression. Mechanism of action studies led to the identification of GSK3987 as an LXR ligand. GSK3987 recruits the steroid receptor coactivator-1 to human LXRalpha and LXRbeta with EC(50)s of 40 nM, profiles as an LXR agonist in functional assays, and activates LXR though a mechanism that is similar to first generation LXR agonists.

View Article and Find Full Text PDF

Liver X receptor (LXR) nuclear receptors regulate the expression of genes involved in whole body cholesterol trafficking, including absorption, excretion, catabolism, and cellular efflux, and possess both anti-inflammatory and antidiabetic actions. Accordingly, LXR is considered an appealing drug target for multiple indications. Synthetic LXR agonists demonstrated inhibition of atherosclerosis progression in murine genetic models; however, these and other studies indicated that their major undesired side effect is an increase of plasma and hepatic triglycerides.

View Article and Find Full Text PDF

Purpose Of Review: Considerable discussion continues regarding the precise role that secreted lipoprotein-associated phospholipase A2 (Lp-PLA2), also called platelet-activating factor acetylhydrolase, plays in atherosclerosis. Since interest in this enzyme as a putative drug target has been based primarily upon its association with low-density lipoprotein (LDL) in human plasma, this review will focus on Lp-PLA2 and human coronary heart disease.

Recent Findings: Recent reports have linked Lp-PLA2 enrichment not only to the most atherogenic of LDL particles but also to the most advanced, rupture-prone, plaques.

View Article and Find Full Text PDF

Inflammation and leukocyte activation/infiltration play a major role in the initiation and progression of cardiovascular diseases including atherosclerosis and heart failure. Acute p38 mitogen-activated protein kinase (MAPK) pathway inhibition attenuates tissue damage and leukocyte accumulation in myocardial ischemia/reperfusion injury, although its effect on the acute phase of leukocyte recruitment has not been elucidated. The purpose of this study was to test the hypothesis that acute treatment of rats with a selective p38 inhibitor, SB-239063, inhibits ischemia/reperfusion-induced leukocyte-endothelial adhesion in vivo.

View Article and Find Full Text PDF