Publications by authors named "Colin Gordon"

The optical properties of transition-metal dichalcogenides have previously been modified at the nanoscale by using mechanical and electrical nanostructuring. However, a clear experimental picture relating the local electronic structure with emission properties in such structures has so far been lacking. Here, we use a combination of scanning tunneling microscopy (STM) and near-field photoluminescence (nano-PL) to probe the electronic and optical properties of single nanobubbles in bilayer heterostructures of WSe on MoSe.

View Article and Find Full Text PDF

Diagnosis and assessment of patients with prostate cancer is dependent on accurate interpretation and grading of histopathology. However, morphology does not necessarily reflect the complex biological changes occurring in prostate cancer disease progression, and current biomarkers have demonstrated limited clinical utility in patient assessment. This study aimed to develop biomarkers that accurately define prostate cancer biology by distinguishing specific pathological features that enable reliable interpretation of pathology for accurate Gleason grading of patients.

View Article and Find Full Text PDF

Objectives: The goals of this study were to assess the air quality in subway systems in the northeastern United States and estimate the health risks for transit workers and commuters.

Methods: We report real-time and gravimetric concentrations and particle composition from area samples collected in the subways of Philadelphia, Pennsylvania; Boston, Massachusetts; New York City, New York/New Jersey (NYC/NJ); and Washington, District of Columbia. A total of 71 stations across 12 transit lines were monitored during morning and evening rush hours.

View Article and Find Full Text PDF

The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain.

View Article and Find Full Text PDF
Article Synopsis
  • The ubiquitin-proteasome system is crucial for breaking down proteins in eukaryotic cells, with ubiquitin chains marking proteins for degradation by the 26S proteasome.
  • Research identified Dss1 (Sem1), a conserved proteasome subunit, as a third receptor that binds ubiquitin chains, specifically those linked by K63 and K48.
  • Detailed structural analysis revealed that Dss1 has disordered regions that interact with ubiquitin through specific binding sites, and mutations in these sites disrupt normal protein degradation and impede cellular growth.
View Article and Find Full Text PDF
Article Synopsis
  • Cells experience stress that can cause proteins to misfold, and to manage this, they use molecular chaperones and the ubiquitin-proteasome pathway for protein degradation.
  • In fission yeast, two proteins, Bag101 and Bag102, interact with proteasomes and help manage misfolded proteins, especially in a defective kinetochore component named Spc7.
  • The study reveals that disruptions in this degradation pathway can be mitigated, suggesting it plays a vital role in maintaining protein quality and genome stability.
View Article and Find Full Text PDF

Background: Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1.

View Article and Find Full Text PDF
Article Synopsis
  • Deneddylases remove the Nedd8 protein from other proteins, and increased activity of these enzymes is linked to cancer in humans.
  • A mutant strain of Aspergillus nidulans lacking two specific deneddylases shows reduced growth and multicellular development, indicating that these enzymes are essential for proper fungal development.
  • The interaction between the DEN1/DenA deneddylase and the COP9 signalosome affects protein degradation and highlights the importance of balanced deneddylase activity for healthy multicellular growth in fungi.
View Article and Find Full Text PDF

Here we report the result of a genetic screen for mutants resistant to the microtubule poison methyl benzimidazol-2-yl carbamate (MBC) that were also temperature sensitive for growth. In total the isolated mutants were distributed in ten complementation groups. Cloning experiments revealed that most of the mutants were in essential genes encoding various 26S proteasome subunits.

View Article and Find Full Text PDF

The ubiquitin-proteasome system is essential for maintaining a functional cell. Not only does it remove incorrectly folded proteins, it also regulates protein levels to ensure their appropriate spatial and temporal distribution. Proteins marked for degradation by the addition of Lys(48)-linked ubiquitin (Ub) chains are recognized by shuttle factors and transported to the 26 S proteasome.

View Article and Find Full Text PDF

The ubiquitin-proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein.

View Article and Find Full Text PDF

Biallelic mutations in the gene encoding DHOdehase [dihydroorotate dehydrogenase (DHODH)], an enzyme required for de novo pyrimidine biosynthesis, have been identified as the cause of Miller (Genée-Weidemann or postaxial acrofacial dysostosis) syndrome (MIM 263750). We report compound heterozygous DHODH mutations in four additional families with typical Miller syndrome. Complementation in auxotrophic yeast demonstrated reduced pyrimidine synthesis and in vitro enzymatic analysis confirmed reduced DHOdehase activity in 11 disease-associated missense mutations, with 7 alleles showing discrepant activity between the assays.

View Article and Find Full Text PDF

In fission yeast, the only known essential function of Ned8p is the modification of the cullin, Pcu1p, and subsequent Cullin-RING-Ligase (CRL) activation and substrate ubiquitination. We show here that a functional Pcu1p mutant, deleted for its C-terminal autoinhibitory domain, which negates the requirement of neddylation for ligase activity, is unable to rescue the loss of neddylation. These findings suggest that the neddylation of non-cullin substrate(s) are required for Schizosaccharomyces pombe viability.

View Article and Find Full Text PDF

The grape and wine industries are heavily reliant on sulphite preservatives. However, the view that sulphites act directly on bacterial and fungal pathogens may be simplistic. Mechanisms of sulphur-enhanced defences are largely unknown; many sulphur-rich compounds enhance plant defences and sulphite can also have oxidative consequences via production of H(2)O(2) or sulphitolysis.

View Article and Find Full Text PDF

The ubiquitin-like protein NEDD8 is highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. NEDD8 conjugation to cullin proteins is a prerequisite for cullin based E3 ubiquitin ligase activity, and essential for S. pombe viability.

View Article and Find Full Text PDF

The 26S proteasome is a large proteolytic particle present in the cytosol and nucleus of eukaryotic cells. Most intracellular proteins, including those affected by oxidative damage, are degraded by the proteasome. The human thioredoxin, Txnl1, is known to associate with the 26S proteasome and thereby equips proteasomes with redox capabilities.

View Article and Find Full Text PDF

Schizosaccharomyces pombe Rpn10 (SpRpn10) is a proteasomal ubiquitin (Ub) receptor located within the 19 S regulatory particle where it binds to subunits of both the base and lid subparticles. We have solved the structure of full-length SpRpn10 by determining the crystal structure of the von Willebrand factor type A domain and characterizing the full-length protein by NMR. We demonstrate that the single Ub-interacting motif (UIM) of SpRpn10 forms a 1:1 complex with Lys(48)-linked diUb, which it binds selectively over monoUb and Lys(63)-linked diUb.

View Article and Find Full Text PDF

Int6/eIF3e is implicated in tumorigenesis, but its molecular functions remain unclear. We have studied its fission yeast homolog Yin6, reporting that it regulates proteolysis by controlling the assembly/localization of proteasomes, and binds directly to another conserved protein, Moe1. In the present study, we isolated Cdc48 as a Moe1-binding protein from a yeast two-hybrid screen, and confirmed biochemically that they form a stable complex in fission yeast.

View Article and Find Full Text PDF

The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we discuss some of the problems and pitfalls that researchers should be aware of when using SPR analyses for studies of the ubiquitin-proteasome system.

View Article and Find Full Text PDF

The ubiquitin-pathway associated (UBA) domain is a 40-residue polyubiquitin-binding motif. The Schizosaccharomyces pombe protein Mud1 is an ortholog of the Saccharomyces cerevisiae DNA-damage response protein Ddi1 and binds to K48-linked polyubiquitin through its UBA domain. We have solved the crystal structure of Mud1 UBA at 1.

View Article and Find Full Text PDF

Protein ubiquitylation is a recognized signal for protein degradation. However, it is increasingly realized that ubiquitin conjugation to proteins can be used for many other purposes. Furthermore, there are many ubiquitin-like proteins that control the activities of proteins.

View Article and Find Full Text PDF

The 26S proteasome is a large multi-protein complex that functions to degrade proteins tagged with multi-ubiquitin chains. There are several mechanisms employed by the cell to ensure the efficient delivery of multi-ubiquitinated substrate proteins to the 26S proteasome. This is not only important to ensure the degradation of damaged and misfolded proteins, but also the regulated turnover of critical cell regulators.

View Article and Find Full Text PDF

Conjugation of proteins to ubiquitin plays a central role for a number of cellular processes including endocytosis, DNA repair and degradation by the 26S proteasome. However, ubiquitination is reversible as a number of deubiquitinating enzymes mediate the disassembly of ubiquitin-protein conjugates. Some deubiquitinating enzymes are associated with the 26S proteasome contributing to and regulating the particle's activity.

View Article and Find Full Text PDF

A cell-free system has been developed in budding yeast that provides direct evidence that the Dsk2/Dph1, Rad23/Rhp23 and Rpn10/Pus1 multi-ubiquitin-binding proteins, long implicated in substrate recognition and presentation to the 26S proteasome, actually fulfil such a role.

View Article and Find Full Text PDF