Publications by authors named "Colin Goldblatt"

Understanding how ecosystems respond to their environmental temperature is a major challenge. Thermodynamic constraints on species' metabolic rates are expected to affect ecosystem characteristics, but species interactions and interspecific variation in physiological thermal response curves (TRC) may obscure ecosystem-level responses to temperature. As a result, macroecological patterns related to temperature are still poorly understood.

View Article and Find Full Text PDF

The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE-3D ocean-atmosphere general circulation model to investigate the response of Earth's present-day and Archean climate system to low versus high ocean salinity. We find that saltier oceans yield warmer climates in large part due to changes in ocean dynamics.

View Article and Find Full Text PDF

The Neoproterozoic Earth was punctuated by two low-latitude Snowball Earth glaciations. Models permit oceans with either total ice cover or substantial areas of open water. Total ice cover would make an anoxic ocean likely, and would be a formidable barrier to biologic survival.

View Article and Find Full Text PDF

Poulsen et al (Reports, 12 June 2015, p. 1238) argued that lower atmospheric oxygen levels during the Phanerozoic would have given a warmer climate. However, radiative and atmospheric structure changes under lower pressure both cause cooling, making their result unusual in that a hierarchy of models gives opposing results.

View Article and Find Full Text PDF

There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K).

View Article and Find Full Text PDF

Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life.

View Article and Find Full Text PDF

The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life.

View Article and Find Full Text PDF

The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability. The largest chemical transition was the 'Great Oxidation', approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10(-5) of the present atmospheric level (PAL) to more than 0.

View Article and Find Full Text PDF