Corin is a transmembrane tethered enzyme best known for processing the hormone atrial natriuretic peptide (ANP) in cardiomyocytes to control electrolyte balance and blood pressure. Loss of function mutations in Corin prevent ANP processing and lead to hypertension. Curiously, Corin loss of function variants also result in lighter coat color pigmentation in multiple species.
View Article and Find Full Text PDFPPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown.
View Article and Find Full Text PDFBackground: Corin is a protease expressed in cardiomyocytes that plays a key role in salt handling and intravascular volume homeostasis via activation of natriuretic peptides. It is unknown if Corin loss-of-function (LOF) is causally associated with risk of coronary artery disease (CAD).
Methods: We analyzed all coding variants in an Italian case-control study of CAD.
DNMDP and related compounds, or velcrins, induce complex formation between the phosphodiesterase PDE3A and the SLFN12 protein, leading to a cytotoxic response in cancer cells that express elevated levels of both proteins. The mechanisms by which velcrins induce complex formation, and how the PDE3A-SLFN12 complex causes cancer cell death, are not fully understood. Here, we show that PDE3A and SLFN12 form a heterotetramer stabilized by binding of DNMDP.
View Article and Find Full Text PDFBackground: Custom genes have become a common resource in recombinant biology over the last 20 years due to the plummeting cost of DNA synthesis. These genes are often "optimized" to non-native sequences for overexpression in a non-native host by substituting synonymous codons within the coding DNA sequence (CDS). A handful of studies have compared native and optimized CDSs, reporting different levels of soluble product due to the accumulation of misfolded aggregates, variable activity of enzymes, and (at least one report of) a change in substrate specificity.
View Article and Find Full Text PDFAnti-cancer uses of non-oncology drugs have occasionally been found, but such discoveries have been serendipitous. We sought to create a public resource containing the growth inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. We used PRISM, a molecular barcoding method, to screen drugs against cell lines in pools.
View Article and Find Full Text PDFCytotoxic molecules can kill cancer cells by disrupting critical cellular processes or by inducing novel activities. 6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2)-one (DNMDP) is a small molecule that kills cancer cells by generation of novel activity. DNMDP induces complex formation between phosphodiesterase 3A (PDE3A) and schlafen family member 12 (SLFN12) and specifically kills cancer cells expressing elevated levels of these two proteins.
View Article and Find Full Text PDFCorin (atrial natriuretic peptide-converting enzyme, EC 3.4.21) is a transmembrane serine protease expressed in cardiomyocytes.
View Article and Find Full Text PDFBeclin-1 (BECN1) is an essential component of macroautophagy. This process is a highly conserved survival mechanism that recycles damaged cellular components or pathogens by encasing them in a bilayer vesicle that fuses with a lysosome to allow degradation of the vesicular contents. Mutations or altered expression profiles of BECN1 have been linked to various cancers and neurodegenerative diseases.
View Article and Find Full Text PDFCirculating low-density lipoprotein cholesterol (LDLc) is regulated by membrane-bound LDL receptor (LDLr). Upon LDLc and LDLr interaction the complex is internalized by the cell, leading to LDLc degradation and LDLr recycling back to the cell surface. The proprotein convertase subtilisin/kexin type 9 (PCSK9) protein regulates this cycling.
View Article and Find Full Text PDFMembers of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed "undruggable" by conventional methods.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2013
RNase L is part of the innate immune response to viral infection. It is activated by a small oligonucleotide (2-5A) whose synthesis is initiated as part of the interferon response. Binding of 2-5A to the N-terminal regulatory region, the ANK domain, of RNase L activates its ribonuclease activity and results in cleavage of RNA in the cell, which ultimately leads to apoptosis of the infected cell.
View Article and Find Full Text PDFThe eukaryotic initiation factor 4E (eIF4E) is the key component of the translational initiation complex that recruits mRNA by binding to a unique "cap" structure located at the 5' end of the mRNA. Overexpression of eIF4E has been implicated in the development of cancer, potentially as a result of increasing the cellular levels of proteins involved in processes that include proliferation and regulation of apoptosis. As a result, the cap-binding site of eIF4E has become a target for the development of anti-cancer therapeutics.
View Article and Find Full Text PDFActivation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins.
View Article and Find Full Text PDFThe mammalian immune response is mediated by a heterotetrameric transcriptional control complex, called regulatory factor X (RFX), that regulates the expression of major histocompatibility complex class II genes. RFX comprises three proteins: RFX5 (two copies), RFXAP, and RFXB, and mutations and deletions that prevent the assembly of the RFX complex have been linked to a severe immunodeficiency disorder. Two RFX5 molecules and one RFXAP molecule assemble in the cytoplasm prior to nuclear localization, a process mediated by an N-terminal "dimerization domain" of RFX5 (RFX5(N)) and a C-terminal domain of RFXAP (RFXAP(C)).
View Article and Find Full Text PDFPax5 (paired box binding factor 5) is a critical regulator of transcription and lineage commitment in B lymphocytes. In B cells, mb-1 (Ig-alpha/immunoglobulin-associated alpha) promoter transcription is activated by Pax5 through its recruitment of E74-like transforming sequence (Ets) family proteins to a composite site, the P5-EBS (Pax5-Ets binding site). Previously, X-ray crystallographic analysis revealed a network of contacts between the DNA-binding domains of Pax5 and Ets-1 while bound to the P5-EBS.
View Article and Find Full Text PDFMajor histocompatibility complex class II (MHCII) molecules have a central role in the mammalian adaptive immune response against infection. The level of the immune response is directly related to the concentration of MHCII molecules in the cell, which have a central role in initiating the immune response. MHCII molecules are therefore a potential target for the development of immunosuppressant drugs for the treatment of organ transplant rejection and autoimmune disease.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2008
The RFX complex is key component of a multi-protein complex that regulates the expression of the Major Histocompatibility Class II (MHCII) genes, whose products are essential for the initiation and development of the adaptive immune response. The RFX complex is comprised of three proteins--RFX5, RFXAP, and RFXB--all of which are required for expression of MHCII genes. We have used electrophoretic mobility shift assays to characterize the DNA binding of RFX5 and the complexes it forms with RFXB and RFXAP, to the proximal regulatory region of the MHCII promoter.
View Article and Find Full Text PDFMajor histocompatability complex class II (MHCII) molecules are an essential component of the mammalian adaptive immune response. The expression of MHCII genes is regulated by a cell-specific multiprotein complex, termed the MHCII enhanceosome. The heterotrimeric RFX complex is the key DNA-binding component of the MHCII enhanceosome.
View Article and Find Full Text PDFPax-5, a member of the paired domain family of transcription factors, is a key regulator of B lymphocyte-specific transcription and differentiation. A major target of Pax-5-mediated activation is the mb-1 gene, which encodes the essential transmembrane signaling protein Ig-alpha. Pax-5 recruits three members of the Ets family of transcription factors: Ets-1, Fli-1 and GABPalpha (with GABPbeta1), to assemble ternary complexes on the mb-1 promoter in vitro.
View Article and Find Full Text PDFThe DNA-binding activity of the eukaryotic transcription factor Ets-1 (E26 avian erythroblastosis virus oncogene-E twenty-six) is negatively regulated by inhibitory regions that flank the ETS domain. Based on the results of solution studies, these N- and C-terminal inhibitory regions have been proposed to pack against the ETS domain and form an autoinhibitory module whose N terminus partially unfolds upon binding of Ets-1 to DNA. Mutations that disrupt autoinhibition of DNA binding also cause a structural change in the inhibitory region.
View Article and Find Full Text PDFWe present the results of in vitro DNA-binding assays for a mutant protein (Q44K) of the E. coli methionine repressor, MetJ, as well as the crystal structure at 2.2 A resolution of the apo-mutant bound to a 10-mer oligonucleotide encompassing an 8 bp met-box sequence.
View Article and Find Full Text PDF