Publications by authors named "Colin G Miles"

The reactivation of developmental genes and pathways during adulthood may contribute to pathogenesis of diseases such as prostate cancer. Analysis of the mechanistic links between development and disease could be exploited to identify signalling pathways leading to disease in the prostate. However, the mechanisms underpinning prostate development require further characterisation to interrogate fully the link between development and disease.

View Article and Find Full Text PDF

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus.

View Article and Find Full Text PDF

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden.

View Article and Find Full Text PDF

MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways.

View Article and Find Full Text PDF

Background: Mutations in ciliary genes cause a spectrum of both overlapping and distinct clinical syndromes (ciliopathies). CEP120 and CC2D2A are paradigmatic examples for this genetic heterogeneity and pleiotropy as mutations in both cause Joubert syndrome but are also associated with skeletal ciliopathies and Meckel syndrome, respectively. The molecular basis for this phenotypical variability is not understood but basal exon skipping likely contributes to tolerance for deleterious mutations via tissue-specific preservation of the amount of expressed functional protein.

View Article and Find Full Text PDF
Article Synopsis
  • miR-140 is primarily found in cartilage, and its complete deletion in mice leads to growth issues and early signs of arthritis; however, the specific roles of its two forms, miR-140-5p and miR-140-3p, remain unclear.
  • A study using small RNA sequencing showed that miR-140-3p is over ten times more abundant than miR-140-5p in human cartilage, with several variations (isomiRs) identified.
  • Experimental results demonstrated that the newly identified isomiR, miR-140-3p.1, has a stronger impact on gene regulation than the typical miR-140-3p, affecting hundreds of genes related to cartilage
View Article and Find Full Text PDF

Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify (alias ) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a -deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of in the parental mouse strain phenocopied the severe cystic kidney phenotype.

View Article and Find Full Text PDF

Joubert syndrome (JBTS) is an incurable multisystem ciliopathy syndrome. The most commonly mutated gene in JBTS patients with a cerebello-retinal-renal phenotype is CEP290 (alias JBTS5). The encoded CEP290 protein localises to the proximal end of the primary cilium, in the transition zone, where it controls ciliary protein composition and signalling.

View Article and Find Full Text PDF

Genetic treatments of renal ciliopathies leading to cystic kidney disease would provide a real advance in current therapies. Mutations in underlie a ciliopathy called Joubert syndrome (JBTS). Human disease phenotypes include cerebral, retinal, and renal disease, which typically progresses to end stage renal failure (ESRF) within the first two decades of life.

View Article and Find Full Text PDF

Joubert syndrome (JBTS) is a genetically heterogeneous autosomal-recessive neurodevelopmental ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTS-associated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromosome 10 (chr10: 101569997-109106128, UCSC Genome Browser hg 19), and exome sequencing revealed two missense variants in ARL3 within the candidate locus.

View Article and Find Full Text PDF

The majority of multi-exon genes undergo alternative splicing to produce different mRNA transcripts and this may occur in a tissue-specific manner. Assessment of mRNA transcripts isolated from blood samples may sometimes be unhelpful in determining the affect on function of putative splice-site variants affecting kidney-specific mRNA transcripts. Here we present data demonstrating the power of using human urine-derived renal epithelial cells (hUREC) as a source of kidney RNA.

View Article and Find Full Text PDF

Joubert syndrome (JBTS) is the archetypal ciliopathy caused by mutation of genes encoding ciliary proteins leading to multi-system phenotypes, including a cerebello-retinal-renal syndrome. JBTS is genetically heterogeneous, however mutations in CEP290 are a common underlying cause. The renal manifestation of JBTS is a juvenile-onset cystic kidney disease, known as nephronophthisis, typically progressing to end-stage renal failure within the first two decades of life, thus providing a potential window for therapeutic intervention.

View Article and Find Full Text PDF

Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion.

View Article and Find Full Text PDF

Mutations in the Wilms tumor suppressor 1 (WT1) gene are as frequent in acute myeloid leukemia (AML) as in nephroblastma and predict poor prognosis. However, the role of WT1 in hematopoiesis remains unclear. We show that Wt1-deficient mouse embryonic stem cells exhibit reduced hematopoietic potential caused by vascular endothelial growth factor A (Vegf-a)-dependent apoptosis of hematopoietic progenitor cells associated with overproduction of the Vegf-a120 isoform.

View Article and Find Full Text PDF

Denys-Drash syndrome (DDS) is caused by heterozygous mutations of the Wilms' tumour suppressor gene, WT1, characterised by early-onset diffuse mesangial sclerosis often associated with male pseudohermaphroditism and/or Wilms' tumourigenesis. Previously, we reported that the Wt1tmT396 allele induces DDS kidney disease in mice. In the present study heterozygotes (Wt1tmT396/+) were generated on inbred (129/Ola), crossbred (B6/129) and MF1 second backcross (MF1-N2) backgrounds.

View Article and Find Full Text PDF

The majority of mouse genes are estimated to undergo bidirectional transcription; however, their tissue-specific distribution patterns and physiological significance are largely unknown. This is in part due to the lack of methodology to routinely assess the expression of natural antisense transcripts (NATs) on a large scale. Here we tested whether commercial DNA arrays can be used to monitor antisense transcription in mouse kidney and brain.

View Article and Find Full Text PDF

Ras proteins transduce signals from membrane-bound receptors via multiple downstream effector pathways and thereby affect fundamental cellular processes, including proliferation, apoptosis, and differentiation. K-ras activating mutations play a key role in neoplastic progression and are particularly prevalent in colorectal, pancreatic, and lung cancers. The present study addressed whether the K-ras proto-oncogene displays a tumor suppressor function by comparative analysis of mouse teratomas derived from wild-type embryonic stem (ES) cells, K-ras null (K-ras(-/-)) ES cells, and K-ras(-/-) ES cells that stably reexpress either wild-type K-ras(gly12) or oncogenic K-ras(val12).

View Article and Find Full Text PDF

Denys-Drash syndrome (DDS) is caused by dominant mutations of the Wilms' tumour suppressor gene, WT1, and characterized by a nephropathy involving diffuse mesangial sclerosis, male pseudohermaphroditism and/or Wilms' tumourigenesis. Previously, we reported that heterozygosity for the Wt1tmT396 mutation induces DDS in heterozygous and chimeric (Wt1tmT396/+<-->+/+) mice. In the present study, the fate of Wt1 mutant cells in chimeric kidneys was assessed by in situ marker analysis, and immunocytochemistry was used to re-examine the claim that glomerulosclerosis (GS) is caused by loss of WT1 and persistent Pax-2 expression by podocytes.

View Article and Find Full Text PDF

The teleost fish are widely used as model organisms in vertebrate biology. The compact genome of the pufferfish, Fugu rubripes, has proven a valuable tool in comparative genome analyses, aiding the annotation of mammalian genomes and the identification of conserved regulatory elements, whilst the zebrafish is particularly suited to genetic and developmental studies. We demonstrate that a pufferfish WT1 transgene can be expressed and spliced appropriately in transgenic zebrafish, contrasting with the situation in transgenic mice.

View Article and Find Full Text PDF

Mutations in the Wilms' tumor 1 gene, WT1, cause pediatric nephroblastoma and the severe genitourinary disorders of Frasier and Denys-Drash syndromes. High levels of WT1 expression are found in the developing kidney, uterus, and testis--consistent with this finding, the WT1 knockout mouse demonstrates that WT1 is essential for normal genitourinary development. The WT1 gene encodes multiple isoforms of a zinc finger-containing protein by a combination of alternative splicing and alternative translation initiation.

View Article and Find Full Text PDF