Publications by authors named "Colin Dewey"

Article Synopsis
  • Studying protein isoforms is crucial for biomedical research, but current methods using bottom-up mass spectrometry often face challenges like noisy detection and shared peptides, making it hard to analyze individual isoforms.
  • A new statistical method is introduced to enhance protein isoform analysis by combining mass spectrometry and transcriptomics data in a Bayesian framework, addressing uncertainties in peptide detection and abundance allocation.
  • The method shows strong performance in simulations and real datasets, accurately inferring protein isoform presence, estimating their abundance, and detecting differences between protein and transcript levels; it is available as a free Bioconductor R package with usage examples.
View Article and Find Full Text PDF

Wound healing is impaired by infection; however, how microbe-induced inflammation modulates tissue repair remains unclear. We took advantage of the optical transparency of zebrafish and a genetically tractable microbe, , to probe the role of infection and inflammation in wound healing. Infection with bacteria engineered to activate the inflammasome, Lm-Pyro, induced persistent inflammation and impaired healing despite low bacterial burden.

View Article and Find Full Text PDF

RNA sequencing (RNA-seq) has been a widely used high-throughput method to characterize transcriptomic dynamics spatiotemporally. However, RNA-seq data analysis pipelines typically depend on either a sequenced genome and/or corresponding reference transcripts. This limitation is a challenge for species lacking sequenced genomes and corresponding reference transcripts.

View Article and Find Full Text PDF

The RNA-regulatory exosome complex (EC) posttranscriptionally and cotranscriptionally processes and degrades RNAs in a context-dependent manner. Although the EC functions in diverse cell types, its contributions to stem and progenitor cell development are not well understood. Previously, we demonstrated that the transcriptional regulator of erythrocyte development, GATA1, represses EC subunit genes, and the EC maintains erythroid progenitors in vitro.

View Article and Find Full Text PDF

Memory T cells underpin vaccine-induced immunity but are not yet fully understood. To distinguish features of memory cells that confer protective immunity, we used single cell transcriptome analysis to compare antigen-specific CD4T cells recalled to lungs of mice that received a protective or nonprotective subunit vaccine followed by challenge with a fungal pathogen. We unexpectedly found populations specific to protection that expressed a strong type I interferon response signature, whose distinctive transcriptional signature appeared unconventionally dependent on IFN-γ receptor.

View Article and Find Full Text PDF

Neutrophils in the tumor microenvironment exhibit altered functions. However, the changes in neutrophil behavior during tumor initiation remain unclear. Here we used Translating Ribosomal Affinity Purification (TRAP) and RNA sequencing to identify neutrophil, macrophage and transformed epithelial cell transcriptional changes induced by oncogenic Ras in larval zebrafish.

View Article and Find Full Text PDF
Article Synopsis
  • - Cell type annotation is crucial for analyzing single-cell RNA sequencing (RNA-seq) data, helping researchers understand the specific types of cells present in their samples.
  • - CellO is a machine-learning tool that uses the Cell Ontology, which organizes various known cell types, to help with this annotation process in human cells.
  • - The protocol explains how to use the CellO Python package alongside Scanpy for annotating lung tissue data, interpreting cell type annotations, and creating figures suitable for publication.
View Article and Find Full Text PDF

Cellular differentiation requires vast remodeling of transcriptomes, and therefore machinery mediating remodeling controls differentiation. Relative to transcriptional mechanisms governing differentiation, post-transcriptional processes are less well understood. As an important post-transcriptional determinant of transcriptomes, the RNA exosome complex (EC) mediates processing and/or degradation of select RNAs.

View Article and Find Full Text PDF

Cell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification of cell clusters by considering the rich hierarchical structure of known cell types.

View Article and Find Full Text PDF

Melanoma is one of the most serious forms of skin cancer, and its increasing incidence coupled with nonlasting therapeutic options for metastatic disease highlights the need for additional novel approaches for its management. In this study, we determined the potential interactions between polo-like kinase 1 (PLK1, a serine/threonine kinase involved in mitotic regulation) and NOTCH1 (a type I transmembrane protein deciding cell fate during development) in melanoma. Employing an in-house human melanoma tissue microarray (TMA) containing multiple cases of melanomas and benign nevi, coupled with high-throughput, multispectral quantitative fluorescence imaging analysis, we found a positive correlation between PLK1 and NOTCH1 in melanoma.

View Article and Find Full Text PDF

Tissue damage induces rapid recruitment of leukocytes and changes in the transcriptional landscape that influence wound healing. However, the cell-type specific transcriptional changes that influence leukocyte function and tissue repair have not been well characterized. Here, we employed translating ribosome affinity purification (TRAP) and RNA sequencing, TRAP-seq, in larval zebrafish to identify genes differentially expressed in neutrophils, macrophages, and epithelial cells in response to wounding.

View Article and Find Full Text PDF

Publicly available RNA-seq data is routinely used for retrospective analysis to elucidate new biology. Novel transcript discovery enabled by joint analysis of large collections of RNA-seq data sets has emerged as one such analysis. Current methods for transcript discovery rely on a '2-Step' approach where the first step encompasses building transcripts from individual data sets, followed by the second step that merges predicted transcripts across data sets.

View Article and Find Full Text PDF

Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver.

View Article and Find Full Text PDF
Whole-Genome Alignment.

Methods Mol Biol

January 2020

Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level between two or more genomes. It combines aspects of both colinear sequence alignment and gene orthology prediction and is typically more challenging to address than either of these tasks due to the size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been developed for its solution because WGAs are valuable for genome-wide analyses such as phylogenetic inference, genome annotation, and function prediction.

View Article and Find Full Text PDF

The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) in , but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP.

View Article and Find Full Text PDF

An enhancer with amalgamated E-box and GATA motifs (+9.5) controls expression of the regulator of hematopoiesis GATA-2. While similar GATA-2-occupied elements are common in the genome, occupancy does not predict function, and GATA-2-dependent genetic networks are incompletely defined.

View Article and Find Full Text PDF

The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly.

View Article and Find Full Text PDF

Motivation: The NCBI's Sequence Read Archive (SRA) promises great biological insight if one could analyze the data in the aggregate; however, the data remain largely underutilized, in part, due to the poor structure of the metadata associated with each sample. The rules governing submissions to the SRA do not dictate a standardized set of terms that should be used to describe the biological samples from which the sequencing data are derived. As a result, the metadata include many synonyms, spelling variants and references to outside sources of information.

View Article and Find Full Text PDF

The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development.

View Article and Find Full Text PDF

RNA-seq is currently the technology of choice for global measurement of transcript abundances in cells. Despite its successes, isoform-level quantification remains difficult because short RNA-seq reads are often compatible with multiple alternatively spliced isoforms. Existing methods rely heavily on uniquely mapping reads, which are not available for numerous isoforms that lack regions of unique sequence.

View Article and Find Full Text PDF

Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2).

View Article and Find Full Text PDF

Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.

View Article and Find Full Text PDF

Segmental duplications and other highly repetitive regions of genomes contribute significantly to cells' regulatory programs. Advancements in next generation sequencing enabled genome-wide profiling of protein-DNA interactions by chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq). However, interactions in highly repetitive regions of genomes have proven difficult to map since short reads of 50-100 base pairs (bps) from these regions map to multiple locations in reference genomes.

View Article and Find Full Text PDF

Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.

View Article and Find Full Text PDF

Motivation: With improvements in next-generation sequencing technologies and reductions in price, ordered RNA-seq experiments are becoming common. Of primary interest in these experiments is identifying genes that are changing over time or space, for example, and then characterizing the specific expression changes. A number of robust statistical methods are available to identify genes showing differential expression among multiple conditions, but most assume conditions are exchangeable and thereby sacrifice power and precision when applied to ordered data.

View Article and Find Full Text PDF