Int J Syst Evol Microbiol
October 2024
An endosymbiotic bacterium of the genus , designated as strain HZ, was cultured from the parasitoid wasp , which develops on the pupae of various host flies. The bacterium was detected in developed on houseflies, , in a poultry facility in Hazon, northern Israel. After culturing, this bacterium displayed no surface motility on Luria-Bertani agar and was rod-shaped and irregular in size, ~10-30 nm in diameter and 5-20 µm in length.
View Article and Find Full Text PDFEvolution results from the interaction of stochastic and deterministic processes that create a web of historical contingency, shaping gene content and organismal function. To understand the scope of this interaction, we examine the relative contributions of stochasticity, determinism, and contingency in shaping gene inactivation in 34 lineages of endosymbiotic bacteria, Sodalis, found in parasitic lice, Columbicola, that are independently undergoing genome degeneration. Here we show that the process of genome degeneration in this system is largely deterministic: genes involved in amino acid biosynthesis are lost while those involved in providing B-vitamins to the host are retained.
View Article and Find Full Text PDFWe present a protocol to establish a synthetic symbiosis between the mCherry-expressing Sodalis praecaptivus and the grain weevil host, Sitophilus zeamais. We describe steps to isolate grain weevil eggs, followed by microinjecting the bacterial symbiont into insect eggs using a modified Drosophila injection protocol, which leads to localization of bacteria in female insect ovaries. We then detail larval transplantation and visualization of bacteria in live insects using a fluorescence dissection microscope to assess the transgenerational transmission to offspring in weevils.
View Article and Find Full Text PDFMany insects maintain mutualistic associations with bacterial endosymbionts, but little is known about how they originate in nature. In this study, we describe the establishment and manipulation of a synthetic insect-bacterial symbiosis in a weevil host. Following egg injection, the nascent symbiont colonized many tissues, including prototypical somatic and germinal bacteriomes, yielding maternal transmission over many generations.
View Article and Find Full Text PDFThe microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus , we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions.
View Article and Find Full Text PDFGenome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays.
View Article and Find Full Text PDFBacterial virulence factors facilitate host colonization and set the stage for the evolution of parasitic and mutualistic interactions. The Sodalis-allied clade of bacteria exhibit striking diversity in the range of both plant and animal feeding insects they inhabit, suggesting the appropriation of universal molecular mechanisms that facilitate establishment. Here, we report on the infection of the tsetse fly by free-living Sodalis praecaptivus, a close relative of many Sodalis-allied symbionts.
View Article and Find Full Text PDFHost-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time.
View Article and Find Full Text PDFMicrobial detoxification of plant toxins influences the use of plants as food sources by herbivores. Stephen's woodrats (Neotoma stephensi) specialize on juniper, which is defended by oxalate, phenolics and monoterpenes, while closely related N. albigula specialize on cactus, which only contains oxalate.
View Article and Find Full Text PDFWeevils, which represent one of the most diverse groups of terrestrial insects in nature, obtain a tough exoskeleton through the activity of an ancient bacterial symbiont with a tiny genome that serves as a factory for the production of tyrosine.
View Article and Find Full Text PDFOxalate, broadly found in both dietary and endogenous sources, is a primary constituent in 80% of kidney stones, an affliction that has tripled in prevalence over the last 40 years. Oxalate-degrading bacteria within the gut microbiota can mitigate the effects of oxalate and are negatively correlated with kidney stone formation, but bacteriotherapies involving oxalate-degrading bacteria have met with mixed results. To inform the development of more effective and consistent bacteriotherapies, we sought to quantify the interactions and limits between oxalate and an oxalate-adapted microbiota from the wild mammalian herbivore (woodrat), which consumes a high-oxalate diet in the wild.
View Article and Find Full Text PDFFor mammals, oxalate enters the body through the diet or is endogenously produced by the liver; it is removed by microbial oxalate metabolism in the gut and/or excretion in feces or urine. Deficiencies in any one of the these pathways can lead to complications, such as calcium oxalate urinary stones. While considerable research has been conducted on individual oxalate-degrading bacterial isolates, interactions between oxalate and the gut microbiota as a whole are unknown.
View Article and Find Full Text PDFBackground: Harboring foregut microbial communities is considered a key innovation that allows herbivorous mammals to colonize new ecological niches. However, the functions of these chambers have only been well studied at the molecular level in ruminants. Here, we investigate gene expression in the foregut chamber of herbivorous rodents and ask whether these gene expression patterns are consistent with results in ruminants.
View Article and Find Full Text PDFMany bacteria utilize two-component systems consisting of a sensor kinase and a transcriptional response regulator to detect environmental signals and modulate gene expression for adaptation. The response regulator PhoP and its cognate sensor kinase PhoQ compose a two-component system known for its role in responding to low levels of Mg , Ca , pH and to the presence of antimicrobial peptides and activating the expression of genes involved in adaptation to host association. Compared with their free-living relatives, mutualistic insect symbiotic bacteria inhabit a static environment where the requirement for sensory functions is expected to be relaxed.
View Article and Find Full Text PDFGut microbes are essential for the degradation of dietary oxalate, and this function may play a role in decreasing the incidence of kidney stones. However, many oxalate-degrading bacteria are susceptible to antibiotics and the use of oxalate-degrading probiotics has only led to an ephemeral reduction in urinary oxalate. The objective of the current study was to determine the efficacy of using whole-community microbial transplants from a wild mammalian herbivore, Neotoma albigula, to increase oxalate degradation over the long term in the laboratory rat, Rattus norvegicus.
View Article and Find Full Text PDFThe gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula.
View Article and Find Full Text PDFAs a consequence of population level constraints in the obligate, host-associated lifestyle, intracellular symbiotic bacteria typically exhibit high rates of molecular sequence evolution and extensive genome degeneration over the course of their host association. While the rationale for genome degeneration is well understood, little is known about the molecular mechanisms driving this change. To understand these mechanisms we compared the genome of Sodalis praecaptivus, a nonhost associated bacterium that is closely related to members of the Sodalis-allied clade of insect endosymbionts, with the very recently derived insect symbiont Candidatus Sodalis pierantonius.
View Article and Find Full Text PDFDiet is one of the primary drivers that sculpts the form and function of the mammalian gut microbiota. However, the enormous taxonomic and metabolic diversity held within the gut microbiota makes it difficult to isolate specific diet-microbe interactions. The objective of the current study was to elucidate interactions between the gut microbiota of the mammalian herbivore Neotoma albigula and dietary oxalate, a plant secondary compound (PSC) degraded exclusively by the gut microbiota.
View Article and Find Full Text PDFA Gram-stain-negative bacterium, isolated from a human wound was previously found to share an unprecedentedly close relationship with Sodalis glossinidius and other members of the Sodalis-allied clade of insect symbionts. This relationship was inferred from sequence analysis of the 16S rRNA gene and genomic comparisons and suggested the strain belonged to a novel species. Biochemical and genetic analyses supported this suggestion and demonstrated that the organism has a wide repertoire of metabolic properties, which is consistent with the presence of a relatively large gene inventory.
View Article and Find Full Text PDFThe foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata).
View Article and Find Full Text PDFSymbiotic associations between animals and microbes are ubiquitous in nature, with an estimated 15% of all insect species harboring intracellular bacterial symbionts. Most bacterial symbionts share many genomic features including small genomes, nucleotide composition bias, high coding density, and a paucity of mobile DNA, consistent with long-term host association. In this study, we focus on the early stages of genome degeneration in a recently derived insect-bacterial mutualistic intracellular association.
View Article and Find Full Text PDFBackground: Many groups of insects have obligate bacterial symbionts that are vertically transmitted. Such associations are typically characterized by the presence of a monophyletic group of bacteria living in a well-defined host clade. In addition the phylogeny of the symbiotic bacteria is typically congruent with that of the host, signifying co-speciation.
View Article and Find Full Text PDFDespite extensive study, little is known about the origins of the mutualistic bacterial endosymbionts that inhabit approximately 10% of the world's insects. In this study, we characterized a novel opportunistic human pathogen, designated "strain HS," and found that it is a close relative of the insect endosymbiont Sodalis glossinidius. Our results indicate that ancestral relatives of strain HS have served as progenitors for the independent descent of Sodalis-allied endosymbionts found in several insect hosts.
View Article and Find Full Text PDFSodalis glossinidius, a maternally inherited endosymbiont of the tsetse fly, maintains genes encoding homologues of the PhoP-PhoQ two-component regulatory system. This two-component system has been extensively studied in facultative bacterial pathogens and is known to serve as an environmental magnesium sensor and a regulator of key virulence determinants. In the current study, we show that the inactivation of the response regulator, phoP, renders S.
View Article and Find Full Text PDF